Machine Learning-Driven Dynamic Maps Supporting Wildfire Risk Management

被引:0
|
作者
Perello, Nicole [1 ,2 ]
Meschi, Giorgio [2 ]
Trucchia, Andrea [2 ]
D'Andrea, Mirko [2 ]
Baghino, Francesco [1 ,2 ]
degli Esposti, Silvia [2 ]
Fiorucci, Paolo [2 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via AllOpera Pia 13, I-16145 Genoa, Italy
[2] CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 02期
关键词
Wildfire; risk management; machine learning; time series classification;
D O I
10.1016/j.ifacol.2024.07.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent decades have seen an increase in wildfires activity, posing risks to human settlements, and forcing exploration of new technologies for wildfire risk management. Utilizing Machine Learning in Time Series classification, this study produces decision support maps for Civil Protection system in Italy, which is responsible for coordinating national firefighting air fleet. Trained on past events data, the model gives daily indication on wildfire occurrence and aerial support requests for each administrative unit utilizing time series of Forest Fire Danger Rating indexes from RISICO model. Despite its recent implementation, it performed properly in 2023, showcasing model's potential for decision support. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [41] MACHINE LEARNING-DRIVEN STRATEGIES FOR CUSTOMER RETENTION AND FINANCIAL IMPROVEMENT
    Rakesh, N.
    Mohan, B. A.
    Kumaran, U.
    Prakash, G. L.
    Arul, Rajakumar
    Thirugnanasambandam, Kalaipriyan
    ARCHIVES FOR TECHNICAL SCIENCES, 2024, (31): : 269 - 283
  • [42] Machine learning-driven electronic identifications of single pathogenic bacteria
    Hattori, Shota
    Sekido, Rintaro
    Leong, Iat Wai
    Tsutsui, Makusu
    Arima, Akihide
    Tanaka, Masayoshi
    Yokota, Kazumichi
    Washio, Takashi
    Kawai, Tomoji
    Okochi, Mina
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Machine learning-driven dynamic risk prediction for highly pathogenic avian influenza at poultry farms in Republic of Korea: Daily risk estimation for individual premises
    Yoo, Dae-sung
    Song, Yu-han
    Choi, Dae-woo
    Lim, Jun-Sik
    Lee, Kwangnyeong
    Kang, Taehun
    TRANSBOUNDARY AND EMERGING DISEASES, 2022, 69 (05) : 2667 - 2681
  • [44] An explainable machine learning-driven proposal of pulmonary fibrosis biomarkers
    Fanidis, Dionysios
    Pezoulas, Vasileios C.
    Fotiadis, Dimitrios, I
    Aidinis, Vassilis
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 2305 - 2315
  • [45] Development of a machine learning-driven formula for calculating fragment velocity
    Zhang, Sheng
    Wang, Zhen-Qing
    Li, Shu-Tao
    Ai, Tian-Chun
    Chen, Ye-Qing
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2025, 201
  • [46] Machine learning-driven process of alumina ceramics laser machining
    Behbahani, Razyeh
    Sarvestani, Hamidreza Yazdani
    Fatehi, Erfan
    Kiyani, Elham
    Ashrafi, Behnam
    Karttunen, Mikko
    Rahmat, Meysam
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [47] Machine Learning-Driven Prediction of Peritoneal Dialysis Technique Failure
    Monaghan, Caitlin
    Willetts, Joanna
    Han, Hao
    Kraus, Michael A.
    Chatoth, Dinesh K.
    Usvyat, Len A.
    Maddux, Franklin W.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 329 - 329
  • [48] Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis
    Akshay, Akshay
    Katoch, Mitali
    Shekarchizadeh, Navid
    Abedi, Masoud
    Sharma, Ankush
    Burkhard, Fiona C.
    Adam, Rosalyn M.
    Monastyrskaya, Katia
    Gheinani, Ali Hashemi
    GIGASCIENCE, 2024, 13
  • [49] Machine Learning-Driven Dynamic Traffic Steering in 6G: A Novel Path Selection Scheme
    Ng, Hibatul Azizi Hisyam
    Mahmoodi, Toktam
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (12)
  • [50] AI Meets the Eye of the Storm: Machine Learning-Driven Insights for Hurricane Damage Risk Assessment in Florida
    Arachchige, Sameera Maha
    Pradhan, Biswajeet
    EARTH SYSTEMS AND ENVIRONMENT, 2025,