Machine Learning-Driven Dynamic Maps Supporting Wildfire Risk Management

被引:0
|
作者
Perello, Nicole [1 ,2 ]
Meschi, Giorgio [2 ]
Trucchia, Andrea [2 ]
D'Andrea, Mirko [2 ]
Baghino, Francesco [1 ,2 ]
degli Esposti, Silvia [2 ]
Fiorucci, Paolo [2 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via AllOpera Pia 13, I-16145 Genoa, Italy
[2] CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 02期
关键词
Wildfire; risk management; machine learning; time series classification;
D O I
10.1016/j.ifacol.2024.07.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent decades have seen an increase in wildfires activity, posing risks to human settlements, and forcing exploration of new technologies for wildfire risk management. Utilizing Machine Learning in Time Series classification, this study produces decision support maps for Civil Protection system in Italy, which is responsible for coordinating national firefighting air fleet. Trained on past events data, the model gives daily indication on wildfire occurrence and aerial support requests for each administrative unit utilizing time series of Forest Fire Danger Rating indexes from RISICO model. Despite its recent implementation, it performed properly in 2023, showcasing model's potential for decision support. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [31] Machine learning-driven energy management of a hybrid nuclear-wind-solar-desalination plant
    Pombo, Daniel Vázquez
    Bindner, Henrik W.
    Spataru, Sergiu V.
    Sørensen, Poul E.
    Rygaard, Martin
    Desalination, 2022, 537
  • [32] Machine Learning-Driven Job Recommendations: Harnessing Genetic Algorithms
    Aziz, Mohammad Tarek
    Mahmud, Tanjim
    Uddin, Mohammad Kamal
    Hossain, Samien Naif
    Datta, Nippon
    Akther, Sharmin
    Hossain, Mohammad Shahadat
    Andersson, Karl
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 8, ICICT 2024, 2024, 1004 : 471 - 480
  • [33] Machine learning methods for wildfire risk assessment
    Brys, Carlos
    Martinez, David Luis La Red
    Marinelli, Marcelo
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [34] Machine learning-driven diagnostic signature provides new insights in clinical management of hypertrophic cardiomyopathy
    Liu, Shutong
    Yuan, Peiyu
    Zheng, Youyang
    Guo, Chunguang
    Ren, Yuqing
    Weng, Siyuan
    Zhang, Yuyuan
    Liu, Long
    Xing, Zhe
    Wang, Libo
    Han, Xinwei
    ESC HEART FAILURE, 2024, 11 (04): : 2234 - 2248
  • [35] KUALA: a machine learning-driven framework for kinase inhibitors repositioning
    De Simone, Giada
    Sardina, Davide Stefano
    Gulotta, Maria Rita
    Perricone, Ugo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [36] KUALA: a machine learning-driven framework for kinase inhibitors repositioning
    Giada De Simone
    Davide Stefano Sardina
    Maria Rita Gulotta
    Ugo Perricone
    Scientific Reports, 12
  • [37] WebDraw: A machine learning-driven tool for automatic website prototyping
    Kaluarachchi, Thisaranie
    Wickramasinghe, Manjusri
    SCIENCE OF COMPUTER PROGRAMMING, 2024, 233
  • [38] Machine Learning-Driven Approaches for Advanced Microwave Filter Design
    Javadi, Sara
    Rezaee, Behrooz
    Nabavi, Sayyid Shahab
    Gadringer, Michael Ernst
    Boesch, Wolfgang
    ELECTRONICS, 2025, 14 (02):
  • [39] In silico drug discovery: a machine learning-driven systematic review
    Atasever, Sema
    MEDICINAL CHEMISTRY RESEARCH, 2024, 33 (09) : 1465 - 1490
  • [40] Machine learning-driven electronic identifications of single pathogenic bacteria
    Shota Hattori
    Rintaro Sekido
    Iat Wai Leong
    Makusu Tsutsui
    Akihide Arima
    Masayoshi Tanaka
    Kazumichi Yokota
    Takashi Washio
    Tomoji Kawai
    Mina Okochi
    Scientific Reports, 10