Machine Learning-Driven Dynamic Maps Supporting Wildfire Risk Management

被引:0
|
作者
Perello, Nicole [1 ,2 ]
Meschi, Giorgio [2 ]
Trucchia, Andrea [2 ]
D'Andrea, Mirko [2 ]
Baghino, Francesco [1 ,2 ]
degli Esposti, Silvia [2 ]
Fiorucci, Paolo [2 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via AllOpera Pia 13, I-16145 Genoa, Italy
[2] CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 02期
关键词
Wildfire; risk management; machine learning; time series classification;
D O I
10.1016/j.ifacol.2024.07.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent decades have seen an increase in wildfires activity, posing risks to human settlements, and forcing exploration of new technologies for wildfire risk management. Utilizing Machine Learning in Time Series classification, this study produces decision support maps for Civil Protection system in Italy, which is responsible for coordinating national firefighting air fleet. Trained on past events data, the model gives daily indication on wildfire occurrence and aerial support requests for each administrative unit utilizing time series of Forest Fire Danger Rating indexes from RISICO model. Despite its recent implementation, it performed properly in 2023, showcasing model's potential for decision support. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] Machine learning-driven credit risk: a systemic review
    Shi, Si
    Tse, Rita
    Luo, Wuman
    D'Addona, Stefano
    Pau, Giovanni
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 14327 - 14339
  • [2] Machine learning-driven credit risk: a systemic review
    Si Shi
    Rita Tse
    Wuman Luo
    Stefano D’Addona
    Giovanni Pau
    Neural Computing and Applications, 2022, 34 : 14327 - 14339
  • [3] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [4] Machine Learning-Driven Language Assessment
    Settles, Burr
    LaFlair, Geoffrey T.
    Hagiwara, Masato
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2020, 8 : 247 - 263
  • [5] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [6] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [7] Cholesterol Contributes to Risk, Severity, and Machine Learning-Driven Diagnosis of Lyme Disease
    Forrest, Iain S.
    O'Neal, Anya J.
    Pedra, Joao H. F.
    Do, Ron
    CLINICAL INFECTIOUS DISEASES, 2023, 77 (06) : 839 - 847
  • [8] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [9] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [10] Machine learning-driven predictions and interventions for cardiovascular occlusions
    Thomas, Anvin
    Jose, Rejath
    Syed, Faiz
    Wei, Ong Chi
    Toma, Milan
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (05) : 3535 - 3556