High-resolution population mapping by fusing remote sensing and social sensing data considering the spatial scale mismatch issue

被引:0
|
作者
Feng, Peijun [1 ]
Ma, Zheng [2 ]
Yan, Jining [1 ,3 ]
Sun, Leigang [4 ,5 ]
Wu, Nan [1 ]
Cheng, Luxiao [6 ]
Yan, Dongmei [7 ,8 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Informatizat Off, Wuhan, Peoples R China
[3] Minist Educ, Engn Res Ctr Nat Resource Informat Management & Di, Wuhan 430074, Peoples R China
[4] Hebei Acad Sci, Inst Geog Sci, Shijiazhuang, Peoples R China
[5] Hebei Technol Innovat Ctr Geog Informat Applicat, Shijiazhuang, Peoples R China
[6] Hubei Univ Technol Wuhan, Sch Comp Sci, Wuhan, Peoples R China
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[8] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
High-resolution population; social sensing data; spatial scale mismatch; multisource data fusion; deep learning; POINTS-OF-INTEREST; NIGHTTIME LIGHT; CHINA; DYNAMICS; MODEL; SURFACE; IMAGES;
D O I
10.1080/17538947.2025.2479863
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
High-resolution population data are crucial for various applications, from developing regional plans to disaster risk management. Current population spatialization methods typically apply population mapping relationships established at the regional level to the grid level using multi-source data. However, the significant scale difference between the regional and grid levels, combined with the simple integration of multi-source data features without considering the spatial dependence of the population, results in lower accuracy. To address the scale mismatch issue in the downscaling process, we first construct a spatially heterogeneous population label by combining census data with gridded population datasets. Then, we establish a relationship mapping between population covariates and population at a low-resolution scale (100 m) and apply it to a neighboring high-resolution scale (25 m) to reduce the prediction bias resulting from directly downscaling from the regional level to the grid level. Meanwhile, a deep learning model based on transformer feature attention convolution net (TFACNet) is employed to aggregate each geographic unit's global and local spatial relationships, integrating complementary features learned from multi-source heterogeneous data in an end-to-end manner. The experimental results in Wuhan and Guilin show that our method achieved a more accurate population spatialization (overall $R<^>2\approx$R2 approximate to 0.92) at the street level.
引用
收藏
页数:24
相关论文
共 50 条
  • [32] Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data
    Cheret, Veronique
    Denux, Jean Philippe
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2007, 112 (G2)
  • [33] High-resolution remote sensing data improves models of species richness
    Camathias, Linda
    Bergamini, Ariel
    Kuechler, Meinrad
    Stofer, Silvia
    Baltensweiler, Andri
    APPLIED VEGETATION SCIENCE, 2013, 16 (04) : 539 - 551
  • [34] A New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture
    Babaeian, Ebrahim
    Sidike, Paheding
    Newcomb, Maria S.
    Maimaitijiang, Maitiniyazi
    White, Scott A.
    Demieville, Jeffrey
    Ward, Richard W.
    Sadeghi, Morteza
    LeBauer, David S.
    Jones, Scott B.
    Sagan, Vasit
    Tuller, Markus
    FRONTIERS IN BIG DATA, 2019, 2
  • [35] China's high-resolution optical remote sensing satellites and their mapping applications
    Li, Deren
    Wang, Mi
    Jiang, Jie
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (01) : 85 - 94
  • [36] Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data
    Gerl, Tina
    Bochow, Mathias
    Kreibich, Heidi
    WATER, 2014, 6 (08) : 2367 - 2393
  • [37] Road extraction from high-resolution remote sensing images with spatial continuity
    Remote Sensing and GIS Application Laboratory, Xinjiang Ecology and Geography Institute, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
    不详
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 11 (1298-1301):
  • [38] A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification
    Wang, Guizhou
    Liu, Jianbo
    He, Guojin
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [39] Weakly supervised scale adaptation data augmentation for scene classification of high-resolution remote sensing images
    Wang L.
    Qi K.
    Yang C.
    Wu H.
    National Remote Sensing Bulletin, 2023, 27 (12) : 2815 - 2830
  • [40] Remote Identification of Housing Buildings with High-Resolution Remote Sensing
    Luis Silvan-Cardenas, Jose
    Andres Almazan-Gonzalez, Juan
    Couturier, Stephane A.
    PATTERN RECOGNITION, MCPR 2014, 2014, 8495 : 380 - +