High-resolution population mapping by fusing remote sensing and social sensing data considering the spatial scale mismatch issue

被引:0
|
作者
Feng, Peijun [1 ]
Ma, Zheng [2 ]
Yan, Jining [1 ,3 ]
Sun, Leigang [4 ,5 ]
Wu, Nan [1 ]
Cheng, Luxiao [6 ]
Yan, Dongmei [7 ,8 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Informatizat Off, Wuhan, Peoples R China
[3] Minist Educ, Engn Res Ctr Nat Resource Informat Management & Di, Wuhan 430074, Peoples R China
[4] Hebei Acad Sci, Inst Geog Sci, Shijiazhuang, Peoples R China
[5] Hebei Technol Innovat Ctr Geog Informat Applicat, Shijiazhuang, Peoples R China
[6] Hubei Univ Technol Wuhan, Sch Comp Sci, Wuhan, Peoples R China
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[8] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
High-resolution population; social sensing data; spatial scale mismatch; multisource data fusion; deep learning; POINTS-OF-INTEREST; NIGHTTIME LIGHT; CHINA; DYNAMICS; MODEL; SURFACE; IMAGES;
D O I
10.1080/17538947.2025.2479863
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
High-resolution population data are crucial for various applications, from developing regional plans to disaster risk management. Current population spatialization methods typically apply population mapping relationships established at the regional level to the grid level using multi-source data. However, the significant scale difference between the regional and grid levels, combined with the simple integration of multi-source data features without considering the spatial dependence of the population, results in lower accuracy. To address the scale mismatch issue in the downscaling process, we first construct a spatially heterogeneous population label by combining census data with gridded population datasets. Then, we establish a relationship mapping between population covariates and population at a low-resolution scale (100 m) and apply it to a neighboring high-resolution scale (25 m) to reduce the prediction bias resulting from directly downscaling from the regional level to the grid level. Meanwhile, a deep learning model based on transformer feature attention convolution net (TFACNet) is employed to aggregate each geographic unit's global and local spatial relationships, integrating complementary features learned from multi-source heterogeneous data in an end-to-end manner. The experimental results in Wuhan and Guilin show that our method achieved a more accurate population spatialization (overall $R<^>2\approx$R2 approximate to 0.92) at the street level.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Qualitative Spatial Reasoning for High-Resolution Remote Sensing Image Analysis
    Inglada, Jordi
    Michel, Julien
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (02): : 599 - 612
  • [22] Population mapping in China with Tencent social user and remote sensing data
    Xu, Yong
    Song, Yimeng
    Cai, Jixuan
    Zhu, Hong
    APPLIED GEOGRAPHY, 2021, 130
  • [23] FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION
    Chen, Y. X.
    Qin, K.
    Liu, Y.
    Gan, S. Z.
    Zhan, Y.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 467 - 472
  • [24] Selection of the Optimal Segmentation Scale in High-resolution Remote Sensing Image
    Cheng, Yi-xian
    Mao, Feng
    2018 2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2018), 2018, 305 : 107 - 112
  • [25] Fusing Heterogeneous Data: A Case for Remote Sensing and Social Media
    Wang, Han
    Skau, Erik
    Krim, Hamid
    Cervone, Guido
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 6956 - 6968
  • [26] Waterline mapping at the subpixel scale from remote sensing imagery with high-resolution digital elevation models
    Ling, F.
    Xiao, F.
    Du, Y.
    Xue, H. P.
    Ren, X. Y.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (06) : 1809 - 1815
  • [27] Foreword to the Special Issue on Recent Advances in Processing of High-Spatial-Resolution Remote Sensing Data
    Huang, X.
    Zhu, X. X.
    Dell'Acqua, F.
    Fauvel, M.
    Mura, M. Dalla
    Lombardini, F.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2588 - 2593
  • [28] High-spatial-resolution remote sensing
    Brandtberg, Tomas
    Warner, Timothy
    COMPUTER APPLICATIONS IN SUSTAINABLE FOREST MANAGEMENT: INCLUDING PERSPECTIVES ON COLLABORATION AND INTEGRATION, 2006, 11 : 19 - +
  • [29] Surface soil moisture estimation at high spatial resolution by fusing synthetic aperture radar and optical remote sensing data
    Chen, Nengcheng
    Cheng, Bowen
    Zhang, Xiang
    Xing, Chenjie
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [30] Floodplain analysis with high spatial resolution remote sensing satellite data
    Richardson, JR
    Peyton, L
    Correa, AC
    Davis, CH
    Kong, S
    Johnson, HE
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2492 - 2494