Vinogradov's Theorem for Primes With Restricted Digits

被引:0
|
作者
Leng, James [1 ]
Sawhney, Mehtaab [2 ]
机构
[1] UCLA, Dept Math, Los Angeles, CA USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
D O I
10.1093/imrn/rnae294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $g$ be sufficiently large, $b\in \{0,\ldots ,g-1\}$, and $\mathcal{S}_{b}$ be the set of integers with no digit equal to $b$ in their base $g$ expansion. We prove that every sufficiently large odd integer $N$ can be written as $p_{1} + p_{2} + p_{3}$ where $p_{i}$ are prime and $p_{i}\in \mathcal{S}_{b}$.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] The Bombieri-Vinogradov Theorem for Primes of the Form p=x2+y2+1
    Dimitrov, S. I.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)
  • [32] Primes with an average sum of digits
    Drmota, Michael
    Mauduit, Christian
    Rivat, Joel
    COMPOSITIO MATHEMATICA, 2009, 145 (02) : 271 - 292
  • [33] Primes with preassigned digits II
    Harman, Glyn
    Katai, Imre
    ACTA ARITHMETICA, 2008, 133 (02) : 171 - 184
  • [34] Digits, Primes and, of course, Pi
    Chamizo, Fernando
    Raboso, Dulcinea
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (08): : 718 - 721
  • [35] INITIAL DIGITS FOR SEQUENCE OF PRIMES
    WHITNEY, RE
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (02): : 150 - &
  • [36] The sum of digits of Gaussian primes
    Johannes F. Morgenbesser
    The Ramanujan Journal, 2012, 27 : 43 - 70
  • [37] Prescribing the binary digits of primes
    Bourgain, Jean
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (02) : 935 - 955
  • [38] The sum of digits of Gaussian primes
    Morgenbesser, Johannes F.
    RAMANUJAN JOURNAL, 2012, 27 (01): : 43 - 70
  • [39] Prescribing the binary digits of primes
    Jean Bourgain
    Israel Journal of Mathematics, 2013, 194 : 935 - 955
  • [40] ON IMPROVING ROTH'S THEOREM IN THE PRIMES
    Naslund, Eric
    MATHEMATIKA, 2015, 61 (01) : 49 - 62