Primes with an average sum of digits

被引:35
|
作者
Drmota, Michael [1 ]
Mauduit, Christian [2 ]
Rivat, Joel [2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Univ Aix Marseille 2, Inst Math Luminy, CNRS, UMR 6206, F-13288 Marseille 9, France
关键词
sum-of-digits function; primes; exponential sums; central limit theorem; INTEGERS; NUMBERS; POWER;
D O I
10.1112/S0010437X08003898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to provide asymptotic expansions for the numbers # {p <= x : p prime, s(q) (p) = k} for k close to ((q - 1)/2) log(q) X, where s(q)(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form Sigma(p <= x) e(alpha S(q)(p)) (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 50 条
  • [1] SUM OF DIGITS OF PRIMES
    KATAI, I
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (1-2): : 169 - 173
  • [2] The sum of digits of Gaussian primes
    Johannes F. Morgenbesser
    The Ramanujan Journal, 2012, 27 : 43 - 70
  • [3] The sum of digits of Gaussian primes
    Morgenbesser, Johannes F.
    RAMANUJAN JOURNAL, 2012, 27 (01): : 43 - 70
  • [4] The sum of digits of primes in Z[i]
    Drmota, Michael
    Rivat, Joel
    Stoll, Thomas
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (3-4): : 317 - 347
  • [5] Counting Primes whose Sum of Digits is Prime
    Harman, Glyn
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (02)
  • [6] Study of integers with an average sum of digits
    Fouvry, E
    Mauduit, C
    JOURNAL OF NUMBER THEORY, 2005, 114 (01) : 135 - 152
  • [7] SUM AND AVERAGE OF FIRST N PRIMES
    MANDL, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A54 - A55
  • [9] Primes whose sum of digits is prime and metric number theory
    Harman, Glyn
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1042 - 1049
  • [10] Primes with preassigned digits
    Harman, Glyn
    ACTA ARITHMETICA, 2006, 125 (02) : 179 - 185