Primes with an average sum of digits

被引:35
|
作者
Drmota, Michael [1 ]
Mauduit, Christian [2 ]
Rivat, Joel [2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Univ Aix Marseille 2, Inst Math Luminy, CNRS, UMR 6206, F-13288 Marseille 9, France
关键词
sum-of-digits function; primes; exponential sums; central limit theorem; INTEGERS; NUMBERS; POWER;
D O I
10.1112/S0010437X08003898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to provide asymptotic expansions for the numbers # {p <= x : p prime, s(q) (p) = k} for k close to ((q - 1)/2) log(q) X, where s(q)(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form Sigma(p <= x) e(alpha S(q)(p)) (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 50 条