Evaluation of the prostate cancer and its metastases in the [68Ga]Ga-PSMA PET/CT images: deep learning method vs. conventional PET/CT processing
被引:0
|
作者:
Giv, Masoumeh Dorri
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Giv, Masoumeh Dorri
[1
]
Arabi, Hossein
论文数: 0引用数: 0
h-index: 0
机构:
Geneva Univ Hosp, Dept Radiol & Med Informat, Div Nucl Med & Mol Imaging, Geneva, SwitzerlandMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Arabi, Hossein
[2
]
Naseri, Shahrokh
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Fac Med, Dept Med Phys, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Naseri, Shahrokh
[3
]
Firouzabad, Leila Alipour
论文数: 0引用数: 0
h-index: 0
机构:
Iran Univ Med Sci, Radiat Biol Res Ctr, Dept Radit Technol, Tehran, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Firouzabad, Leila Alipour
[4
]
Aghaei, Atena
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Aghaei, Atena
[1
]
Askari, Emran
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Askari, Emran
[1
]
Raeisi, Nasrin
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Raeisi, Nasrin
[1
]
Tanha, Amin Saber
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Tanha, Amin Saber
[1
]
Golestani, Zahra Bakhshi
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Golestani, Zahra Bakhshi
[1
]
Kakhki, Amir Hossein Dabbagh
论文数: 0引用数: 0
h-index: 0
机构:
Shahid Beheshti Univ, Dept Elect Engn, Tehran, IranMashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
Kakhki, Amir Hossein Dabbagh
[5
]
论文数: 引用数:
h-index:
机构:
Kakhki, Vahid Reza Dabbagh
[1
]
机构:
[1] Mashhad Univ Med Sci, Ghaem Hosp, Dept Nucl Med, Nucl Med Res Ctr, Mashhad, Iran
[2] Geneva Univ Hosp, Dept Radiol & Med Informat, Div Nucl Med & Mol Imaging, Geneva, Switzerland
[3] Mashhad Univ Med Sci, Fac Med, Dept Med Phys, Mashhad, Iran
[4] Iran Univ Med Sci, Radiat Biol Res Ctr, Dept Radit Technol, Tehran, Iran
Purpose This study demonstrates the feasibility and benefits of using a deep learning-based approach for attenuation correction in [Ga-68]Ga-PSMA PET scans. Methods A dataset of 700 prostate cancer patients (mean age: 67.6 +/- 5.9 years, range: 45-85 years) who underwent [Ga-68]Ga-PSMA PET/computed tomography was collected. A deep learning model was trained to perform attenuation correction on these images. Quantitative accuracy was assessed using clinical data from 92 patients, comparing the deep learning-based attenuation correction (DLAC) to computed tomography-based PET attenuation correction (PET-CTAC) using mean error, mean absolute error, and root mean square error based on standard uptake value. Clinical evaluation was conducted by three specialists who performed a blinded assessment of lesion detectability and overall image quality in a subset of 50 subjects, comparing DLAC and PET-CTAC images. Results The DLAC model yielded mean error, mean absolute error, and root mean square error values of -0.007 +/- 0.032, 0.08 +/- 0.033, and 0.252 +/- 125 standard uptake value, respectively. Regarding lesion detection and image quality, DLAC showed superior performance in 16 of the 50 cases, while in 56% of the cases, the images generated by DLAC and PET-CTAC were found to have closely comparable quality and lesion detectability. Conclusion This study highlights significant improvements in image quality and lesion detection capabilities through the integration of DLAC in [Ga-68]Ga-PSMA PET imaging. This innovative approach not only addresses challenges such as bladder radioactivity but also represents a promising method to minimize patient radiation exposure by integrating low-dose computed tomography and DLAC, ultimately improving diagnostic accuracy and patient outcomes.
机构:
Royal North Shore Hosp, Dept Nucl Med, Reserve Rd, St Leonards, NSW 2065, AustraliaRoyal North Shore Hosp, Dept Nucl Med, Reserve Rd, St Leonards, NSW 2065, Australia
Chan, Mico
Hsiao, Edward
论文数: 0引用数: 0
h-index: 0
机构:
Royal North Shore Hosp, Dept Nucl Med, Reserve Rd, St Leonards, NSW 2065, AustraliaRoyal North Shore Hosp, Dept Nucl Med, Reserve Rd, St Leonards, NSW 2065, Australia
Hsiao, Edward
Turner, Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
Douglass Hanly Moir Pathol, Dept Histopathol, Sydney, NSW, Australia
Macquarie Univ, Fac Med & Hlth Sci, Sydney, NSW, AustraliaRoyal North Shore Hosp, Dept Nucl Med, Reserve Rd, St Leonards, NSW 2065, Australia