Baikal: Unpaired Denoising of Fluorescence Microscopy Images Using Diffusion Models

被引:0
|
作者
Chaudhary, Shivesh [1 ]
Sankarapandian, Sivaramakrishnan [1 ]
Sooknah, Matt [1 ]
Pai, Joy [1 ]
Mccue, Caroline [1 ]
Chen, Zhenghao [1 ]
Xu, Jun [1 ]
机构
[1] Calico Life Sci LLC, 1170 Vet Blvd South, San Francisco, CA 94080 USA
关键词
Fluorescence Microscopy; Image Denoising; Denoising Diffusion Probabilistic Models; Unpaired Dataset;
D O I
10.1007/978-3-031-72104-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fluorescence microscopy is an indispensable tool for biological discovery but image quality is constrained by desired spatial and temporal resolution, sample sensitivity, and other factors. Computational denoising methods can bypass imaging constraints and improve signal-to-noise ratio in images. However, current state of the art methods are commonly trained in a supervised manner, requiring paired noisy and clean images, limiting their application across diverse datasets. An alternative class of denoising models can be trained in a self-supervised manner, assuming independent noise across samples but are unable to generalize from available unpaired clean images. A method that can be trained without paired data and can use information from available unpaired high-quality images would address both weaknesses. Here, we present Baikal, a first attempt to formulate such a framework using Denoising Diffusion Probabilistic Models (DDPM) for fluorescence microscopy images. We first train a DDPM backbone in an unconditional manner to learn generative priors over complex morphologies in microscopy images. We then apply various conditioning strategies to sample from the trained model and propose an optimal strategy to denoise the desired image. Extensive quantitative comparisons demonstrate better performance of Baikal over state of the art self-supervised methods across multiple datasets. We highlight the advantage of generative priors learnt by DDPMs in denoising complex Flywing morphologies where other methods fail. Overall, our DDPM based denoising framework presents a new class of denoising methods for fluorescence microscopy datasets that achieve good performance without collection of paired high-quality images.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 50 条
  • [41] Superpixel Quality in Microscopy Images: The Impact of Noise & Denoising
    Roels, J.
    De Vylder, J.
    Aelterman, J.
    Lippens, S.
    Saeys, Y.
    Philips, W.
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 258 - 263
  • [42] Sinogram denoising of cryo-electron microscopy images
    Mielikäinen, T
    Ravantti, J
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 1251 - 1261
  • [43] Distortion Correction and Denoising of Light Sheet Fluorescence Images
    Julia, Adrien
    Iguernaissi, Rabah
    Michel, Francois J.
    Matarazzo, Valery
    Merad, Djamal
    SENSORS, 2024, 24 (07)
  • [44] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Sylvain Prigent
    Hoai-Nam Nguyen
    Ludovic Leconte
    Cesar Augusto Valades-Cruz
    Bassam Hajj
    Jean Salamero
    Charles Kervrann
    Scientific Reports, 13 (1)
  • [45] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Prigent, Sylvain
    Nguyen, Hoai-Nam
    Leconte, Ludovic
    Valades-Cruz, Cesar Augusto
    Hajj, Bassam
    Salamero, Jean
    Kervrann, Charles
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [46] Unpaired document image denoising for OCR using BiLSTM enhanced CycleGAN
    Singh, Katyani
    Tata, Ganesh
    Van Oeveren, Eric
    Ray, Nilanjan
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2024,
  • [47] Simultaneously unpaired denoising and super-resolution of PET images via IE-CycleGAN
    Luo, Yi
    Cui, Jianan
    Chen, Donghe
    Shi, Kuangyu
    Su, Xinhui
    Liu, Huafeng
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [48] Analysis of multivariate images in fluorescence microscopy
    Peltier, Caroline
    Winckler, Pascale
    Dujourdy, Laurence
    Bechoua, Shaliha
    Perrier-Cornet, Jean Marie
    METHODS AND APPLICATIONS IN FLUORESCENCE, 2019, 7 (03):
  • [49] Quantification and calibration of images in fluorescence microscopy
    Baskin, David S.
    Widmayer, Marsha A.
    Sharpe, Martyn A.
    ANALYTICAL BIOCHEMISTRY, 2010, 404 (02) : 118 - 126
  • [50] Myelin Segmentation in Fluorescence Microscopy Images
    Yetis, Sibel Cimen
    Ekinci, Dursun A.
    Cakir, Ertan
    Eksioglu, Ender M.
    Ayten, Umut E.
    Capar, Abdulkerim
    Toreyin, B. Ugur
    Kerman, Bilal E.
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 141 - 144