Baikal: Unpaired Denoising of Fluorescence Microscopy Images Using Diffusion Models

被引:0
|
作者
Chaudhary, Shivesh [1 ]
Sankarapandian, Sivaramakrishnan [1 ]
Sooknah, Matt [1 ]
Pai, Joy [1 ]
Mccue, Caroline [1 ]
Chen, Zhenghao [1 ]
Xu, Jun [1 ]
机构
[1] Calico Life Sci LLC, 1170 Vet Blvd South, San Francisco, CA 94080 USA
关键词
Fluorescence Microscopy; Image Denoising; Denoising Diffusion Probabilistic Models; Unpaired Dataset;
D O I
10.1007/978-3-031-72104-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fluorescence microscopy is an indispensable tool for biological discovery but image quality is constrained by desired spatial and temporal resolution, sample sensitivity, and other factors. Computational denoising methods can bypass imaging constraints and improve signal-to-noise ratio in images. However, current state of the art methods are commonly trained in a supervised manner, requiring paired noisy and clean images, limiting their application across diverse datasets. An alternative class of denoising models can be trained in a self-supervised manner, assuming independent noise across samples but are unable to generalize from available unpaired clean images. A method that can be trained without paired data and can use information from available unpaired high-quality images would address both weaknesses. Here, we present Baikal, a first attempt to formulate such a framework using Denoising Diffusion Probabilistic Models (DDPM) for fluorescence microscopy images. We first train a DDPM backbone in an unconditional manner to learn generative priors over complex morphologies in microscopy images. We then apply various conditioning strategies to sample from the trained model and propose an optimal strategy to denoise the desired image. Extensive quantitative comparisons demonstrate better performance of Baikal over state of the art self-supervised methods across multiple datasets. We highlight the advantage of generative priors learnt by DDPMs in denoising complex Flywing morphologies where other methods fail. Overall, our DDPM based denoising framework presents a new class of denoising methods for fluorescence microscopy datasets that achieve good performance without collection of paired high-quality images.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 50 条
  • [31] DENOISING TASK ROUTING FOR DIFFUSION MODELS
    Park, Byeongjun
    Woo, Sangmin
    Go, Hyojun
    Kim, Jin-Young
    Kim, Changick
    12th International Conference on Learning Representations, ICLR 2024, 2024,
  • [32] Improved Denoising Diffusion Probabilistic Models
    Nichol, Alex
    Dhariwal, Prafulla
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [33] Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets
    Eschweiler, Dennis
    Yilmaz, Rueveyda
    Baumann, Matisse
    Laube, Ina
    Roy, Rijo
    Jose, Abin
    Brueckner, Daniel
    Stegmaier, Johannes
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [34] Speech-to-Face Conversion Using Denoising Diffusion Probabilistic Models
    Kato, Shuhei
    Hashimoto, Taiichi
    INTERSPEECH 2023, 2023, : 2188 - 2192
  • [35] Unsupervised Detection of Fetal Brain Anomalies Using Denoising Diffusion Models
    Olsen, Markus Ditlev Sjogren
    Ambsdorf, Jakob
    Lin, Manxi
    Taksoe-Vester, Caroline
    Svendsen, Morten Bo Sondergaard
    Christensen, Anders Nymark
    Nielsen, Mads
    Tolsgaard, Martin Gronnebaek
    Feragen, Aasa
    Pegios, Paraskevas
    SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2024, 2025, 15186 : 209 - 219
  • [36] Predictive microstructure image generation using denoising diffusion probabilistic models
    Azqadan, Erfan
    Jahed, Hamid
    Arami, Arash
    ACTA MATERIALIA, 2023, 261
  • [37] Molecular Denoising Using Diffusion Models with Physics-Informed Priors
    Nadkarni, Ishan
    Cordeiro, J. P. Martinez
    Aluru, Narayana R.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (12): : 3078 - 3085
  • [38] JOINT DENOISING-DECONVOLUTION APPROACH FOR FLUORESCENCE MICROSCOPY
    Maji, Suman Kr.
    Dargemont, Catherine
    Salamero, Jean
    Boulanger, Jerome
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 128 - 131
  • [39] Variance lower bound on fluorescence microscopy image denoising
    Li, Yilun
    Liu, Sheng
    Huang, Fang
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (12) : 6973 - 6988
  • [40] Simultaneous Temporal Superresolution and Denoising for Cardiac Fluorescence Microscopy
    Chan, Kevin G.
    Streichan, Sebastian J.
    Trinh, Le A.
    Liebling, Michael
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (03): : 348 - 358