On the Space of Iterated Function Systems and Their Topological Stability

被引:0
|
作者
Arbieto, Alexander [1 ]
Trilles, Alexandre [2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21945970 Rio De Janeiro, Brazil
[2] Jagiellonian Univ, Doctoral Sch Exact & Nat Sci, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Iterated function systems; Topological stability; Shadowing; Expansiveness; PROPERTY; MAPS;
D O I
10.1007/s12346-025-01250-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study iterated function systems with compact parameter space (IFS for short). We show that the space of IFS with phase space X is the hyperspace of the space of continuous maps from X to itself, which allows us to use the Hausdorff metric to define topological stability for IFS. We then prove that the concordant shadowing property is a necessary condition for topological stability and it is a sufficient condition if the IFS is expansive. Additionally, we provide an example to show that the concordant shadowing property is genuinely different from the traditional notion that, in our setting, becomes too weak.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Quantum iterated function systems
    Lozinski, A
    Zyczkowski, K
    Slomczynski, W
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [32] Cyclic iterated function systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [33] Sensitivity of iterated function systems
    Ghane, F. H.
    Rezaali, E.
    Sarizadeh, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 493 - 503
  • [34] MOBIUS ITERATED FUNCTION SYSTEMS
    Vince, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 491 - 509
  • [35] Accessibility on iterated function systems
    Mohtashamipour, Maliheh
    Bahabadi, Alireza Zamani
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 117 - 124
  • [36] RECURRENT ITERATED FUNCTION SYSTEMS
    BARNSLEY, MF
    ELTON, JH
    HARDIN, DP
    CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 3 - 31
  • [37] Cyclic iterated function systems
    R. Pasupathi
    A. K. B. Chand
    M. A. Navascués
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [38] ATTRACTORS OF ITERATED FUNCTION SYSTEMS
    DUVALL, PF
    HUSCH, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (01) : 279 - 284
  • [39] Ends of iterated function systems
    Conner, Gregory R.
    Hojka, Wolfram
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1073 - 1083
  • [40] On quantum iterated function systems
    Jadczyk, A
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2004, 2 (03): : 492 - 503