On the Space of Iterated Function Systems and Their Topological Stability

被引:0
|
作者
Arbieto, Alexander [1 ]
Trilles, Alexandre [2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21945970 Rio De Janeiro, Brazil
[2] Jagiellonian Univ, Doctoral Sch Exact & Nat Sci, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Iterated function systems; Topological stability; Shadowing; Expansiveness; PROPERTY; MAPS;
D O I
10.1007/s12346-025-01250-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study iterated function systems with compact parameter space (IFS for short). We show that the space of IFS with phase space X is the hyperspace of the space of continuous maps from X to itself, which allows us to use the Hausdorff metric to define topological stability for IFS. We then prove that the concordant shadowing property is a necessary condition for topological stability and it is a sufficient condition if the IFS is expansive. Additionally, we provide an example to show that the concordant shadowing property is genuinely different from the traditional notion that, in our setting, becomes too weak.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On generalized iterated function systems defined on l∞-sum of a metric space
    Maslanka, Lukasz
    Strobin, Filip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1795 - 1832
  • [22] Iterated function systems and dynamical systems
    Gora, P
    Boyarsky, A
    CHAOS, 1995, 5 (04) : 634 - 639
  • [23] On chaos for iterated function systems
    Bahabadi, Alireza Zamani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [24] Ends of iterated function systems
    Gregory R. Conner
    Wolfram Hojka
    Mathematische Zeitschrift, 2014, 277 : 1073 - 1083
  • [25] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538
  • [26] Attractors for iterated function systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (02) : 95 - 117
  • [27] Chaotic iterated function systems
    Aliasghar Sarizadeh
    Archiv der Mathematik, 2022, 119 : 531 - 538
  • [28] Parabolic iterated function systems
    Mauldin, RD
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1423 - 1447
  • [29] Chaos in Iterated Function Systems
    Mohtashamipour, Maliheh
    Bahabadi, Alireza Zamani
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [30] RECURRENT ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01): : 43 - 53