Development and Validation of a Machine Learning Model for Early Detection of Untreated Infection

被引:0
|
作者
Buell, Kevin G. [1 ]
Carey, Kyle A. [1 ]
Dussault, Nicole [2 ]
Parker, William F. [1 ]
Dumanian, Jay [2 ]
Bhavani, Sivasubramanium V. [3 ]
Gilbert, Emily R. [4 ]
Winslow, Christopher J. [5 ]
Shah, Nirav S. [1 ,5 ]
Afshar, Majid [6 ]
Edelson, Dana P. [1 ]
Churpek, Matthew M. [6 ,7 ]
机构
[1] Univ Chicago, Med Ctr, Dept Med, Chicago, IL 60637 USA
[2] Duke Univ, Dept Med, Raleigh, NC USA
[3] Emory Univ, Dept Med, Atlanta, GA USA
[4] Loyola Univ, Dept Med, Chicago, IL USA
[5] Endeavor Hlth, Dept Med, Evanston, IL USA
[6] Univ Wisconsin, Dept Med, Madison, WI USA
[7] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
关键词
anti-infective agents; antimicrobial stewardship; infections; machine learning; INTERNATIONAL CONSENSUS DEFINITIONS; INFLAMMATORY RESPONSE SYNDROME; ORGAN FAILURE; SEPSIS; HOSPITALS; SURVIVAL; DURATION; CRITERIA; TRENDS; SIRS;
D O I
10.1097/CCE.0000000000001165
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Early diagnostic uncertainty for infection causes delays in antibiotic administration in infected patients and unnecessary antibiotic administration in noninfected patients. OBJECTIVE: To develop a machine learning model for the early detection of untreated infection (eDENTIFI), with the presence of infection determined by clinician chart review. DERIVATION COHORT: Three thousand three hundred fifty-seven adult patients hospitalized between 2006 and 2018 at two health systems in Illinois, United States. VALIDATION COHORT: We validated in 1632 patients in a third Illinois health system using area under the receiver operating characteristic curve (AUC). PREDICTION MODEL: Using a longitudinal discrete-time format, we trained a gradient boosted machine model to predict untreated infection in the next 6 hours using routinely available patient demographics, vital signs, and laboratory results. RESULTS: eDENTIFI had an AUC of 0.80 (95% CI, 0.79-0.81) in the validation cohort and outperformed the systemic inflammatory response syndrome criteria with an AUC of 0.64 (95% CI, 0.64-0.65; p < 0.001). The most important features were body mass index, age, temperature, and heart rate. Using a threshold with a 47.6% sensitivity, eDENTIFI detected infection a median 2.0 hours (interquartile range, 0.9-5.2 hr) before antimicrobial administration, with a negative predictive value of 93.6%. Antibiotic administration guided by eDENTIFI could have decreased unnecessary IV antibiotic administration in noninfected patients by 10.8% absolute or 46.4% relative percentage points compared with clinicians. CONCLUSION: eDENTIFI could both decrease the time to antimicrobial administration in infected patients and unnecessary antibiotic administration in noninfected patients. Further prospective validation is needed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multicenter Development and External Validation of a Machine Learning Model to Identify Hospitalized Patients With Untreated Infection
    Buell, K. G.
    Carey, K. A.
    Dussault, N.
    Parker, W. F.
    Dumanian, J.
    Bhavani, S. V.
    Gilbert, E. R.
    Winslow, C. J.
    Shah, N. S.
    Afshar, M.
    Edelson, D. P.
    Churpek, M. M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [2] Validation of a Machine Learning Model for Early Shock Detection
    Pinevich, Yuliya
    Amos-Binks, Adam
    Burris, Christie S.
    Rule, Gregory
    Bogojevic, Marija
    Flint, Isaac
    Pickering, Brian W.
    Nemeth, Christopher P.
    Herasevich, Vitaly
    MILITARY MEDICINE, 2022, 187 (1-2) : 82 - 88
  • [3] Development and validation of a machine learning model integrated with the clinical workflow for early detection of sepsis
    Mahyoub, Mohammed A.
    Yadav, Ravi R.
    Dougherty, Kacie
    Shukla, Ajit
    FRONTIERS IN MEDICINE, 2023, 10
  • [4] DEVELOPMENT OF A MACHINE LEARNING MODEL FOR EARLY SHOCK DETECTION
    Pinevich, Yuliya
    Amos-Binks, Adam
    Burris, Christie
    Rule, Gregory
    Lowe, Ryan
    Pickering, Brian
    Nemeth, Christopher
    Herasevich, Vitaly
    CRITICAL CARE MEDICINE, 2020, 48
  • [5] Development and multi-center validation of machine learning model for early detection of fungal keratitis
    Wei, Zhenyu
    Wang, Shigeng
    Wang, Zhiqun
    Zhang, Yang
    Chen, Kexin
    Gong, Lan
    Li, Guigang
    Zheng, Qinxiang
    Zhang, Qin
    He, Yan
    Zhang, Qi
    Chen, Di
    Cao, Kai
    Pang, Jinding
    Zhang, Zijun
    Wang, Leying
    Ou, Zhonghong
    Liang, Qingfeng
    EBIOMEDICINE, 2023, 88
  • [6] A Machine Learning Model for the Early Identification of Rheumatoid Arthritis: Development and Validation
    Dreyfuss, Michael
    Jenudi, Yonatan
    Riesel, Dan
    Ramni, Or
    Underberger, Daniel
    Getz, Benjamin
    Steinberg-Koch, Shlomit
    White, Douglas
    Myasoedova, Elena
    ARTHRITIS & RHEUMATOLOGY, 2024, 76 : 992 - 994
  • [7] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Alaimo, Laura
    Lima, Henrique A.
    Moazzam, Zorays
    Endo, Yutaka
    Yang, Jason
    Ruzzenente, Andrea
    Guglielmi, Alfredo
    Aldrighetti, Luca
    Weiss, Matthew
    Bauer, Todd W. W.
    Alexandrescu, Sorin
    Poultsides, George A. A.
    Maithel, Shishir K. K.
    Marques, Hugo P. P.
    Martel, Guillaume
    Pulitano, Carlo
    Shen, Feng
    Cauchy, Francois
    Koerkamp, Bas Groot
    Endo, Itaru
    Kitago, Minoru
    Pawlik, Timothy M. M.
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) : 5406 - 5415
  • [8] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Laura Alaimo
    Henrique A. Lima
    Zorays Moazzam
    Yutaka Endo
    Jason Yang
    Andrea Ruzzenente
    Alfredo Guglielmi
    Luca Aldrighetti
    Matthew Weiss
    Todd W. Bauer
    Sorin Alexandrescu
    George A. Poultsides
    Shishir K. Maithel
    Hugo P. Marques
    Guillaume Martel
    Carlo Pulitano
    Feng Shen
    François Cauchy
    Bas Groot Koerkamp
    Itaru Endo
    Minoru Kitago
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2023, 30 : 5406 - 5415
  • [9] Development and Validation of a Machine Learning-Based Prediction Model for Detection of Biliary Atresia
    Choi, Ho Jung
    Kim, Yeong Eun
    Namgoong, Jung-Man
    Kim, Inki
    Park, Jun Sung
    Baek, Woo Im
    Lee, Byong Sop
    Yoon, Hee Mang
    Cho, Young Ah
    Lee, Jin Seong
    Shim, Jung Ok
    Oh, Seak Hee
    Moon, Jin Soo
    Ko, Jae Sung
    Kim, Dae Yeon
    Kim, Kyung Mo
    GASTRO HEP ADVANCES, 2023, 2 (06): : 778 - 787
  • [10] Development and validation of machine learning for early mortality in systemic sclerosis
    Foocharoen, Chingching
    Thinkhamrop, Wilaiphorn
    Chaichaya, Nathaphop
    Mahakkanukrauh, Ajanee
    Suwannaroj, Siraphop
    Thinkhamrop, Bandit
    SCIENTIFIC REPORTS, 2022, 12 (01)