pyStoNED: A Python']Python Package for Convex Regression and Frontier Estimation

被引:0
|
作者
Dai, Sheng [1 ]
Fang, Yu-Hsueh [2 ]
Lee, Chia-Yen [2 ]
Kuosmanen, Timo [3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Econ, Wuhan 430073, Peoples R China
[2] Natl Taiwan Univ, Dept Informat Management, Taipei 106, Taiwan
[3] Univ Turku, Turku Sch Econ, Dept Econ, FI-20014 Turku, Finland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 111卷 / 06期
关键词
multivariate convex regression; nonparametric least squares; frontier estimation; efficiency analysis; stochastic noise; !text type='Python']Python[!/text; NONPARAMETRIC APPROACH; EFFICIENCY;
D O I
10.18637/jss.v111.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape-constrained nonparametric regression is a growing area in econometrics, statistics, operations research, machine learning, and related fields. In the field of productivity and efficiency analysis, recent developments in multivariate convex regression and related techniques such as convex quantile regression and convex expectile regression have bridged the long-standing gap between the conventional deterministic-nonparametric and stochastic-parametric methods. Unfortunately, the heavy computational burden and the lack of a powerful, reliable, and fully open-access computational package have slowed down the diffusion of these advanced estimation techniques to the empirical practice. The purpose of the Python package pyStoNED is to address this challenge by providing a freely available and user-friendly tool for multivariate convex regression, convex quantile velopment of data, and related methods. This paper presents a tutorial of the pyStoNED package and illustrates its application, focusing on estimating frontier cost and production functions.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 50 条
  • [1] salmon: A Symbolic Linear Regression Package for Python']Python
    Boyd, Alex
    Sun, Dennis L.
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (08): : 1 - 26
  • [2] pyFUME: a Python']Python Package for Fuzzy Model Estimation
    Fuchs, Caro
    Spolaor, Simone
    Nobile, Marco S.
    Kaymak, Uzay
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [3] BARMPy: Bayesian additive regression models Python']Python package
    Van Boxel, Danielle
    COMPUTATIONAL STATISTICS, 2024,
  • [4] ImbalancedLearningRegression - A Python']Python Package to Tackle the Imbalanced Regression Problem
    Wu, Wenglei
    Kunz, Nicholas
    Branco, Paula
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 645 - 648
  • [5] EDAspy: An extensible python']python package for estimation of distribution algorithms
    Soloviev, Vicente P.
    Larranaga, Pedro
    Bielza, Concha
    NEUROCOMPUTING, 2024, 598
  • [6] navlie: A Python']Python Package for State Estimation on Lie Groups
    Cossette, Charles Champagne
    Cohen, Mitchell
    Korotkine, Vassili
    Bernal, Arturo Del Castillo
    Shalaby, Mohammed Ayman
    Forbes, James Richard
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5282 - 5287
  • [7] KNNOR-Reg: A python']python package for oversampling in imbalanced regression
    Belhaouari, Samir Brahim
    Islam, Ashhadul
    Kassoul, Khelil
    Al-Fuqaha, Ala
    Bouzerdoum, Abdesselam
    SOFTWARE IMPACTS, 2025, 23
  • [8] Scikit-Dimension: A Python']Python Package for Intrinsic Dimension Estimation
    Bac, Jonathan
    Mirkes, Evgeny M.
    Gorban, Alexander N.
    Tyukin, Ivan
    Zinovyev, Andrei
    ENTROPY, 2021, 23 (10)
  • [9] Pythran: Crossing the Python']Python Frontier
    Guelton, Serge
    COMPUTING IN SCIENCE & ENGINEERING, 2018, 20 (02) : 83 - 89
  • [10] PyEt v1.3.1: a Python']Python package for the estimation of potential evapotranspiration
    Vremec, Matevz
    Collenteur, Raoul A.
    Birk, Steffen
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (18) : 7083 - 7103