Pore-scale modeling of biofilm formation and biofilm-induced anomalous transport features in heterogenous porous media

被引:1
|
作者
Li, Xueying [1 ,2 ,3 ]
Yang, Xiaofan [1 ,3 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, MOE, Key Lab Environm Change & Nat Disaster, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Biofilm formation; Porous media; Reactive transport modeling; Micro-continuum; Anomalous transport; SOLUTE TRANSPORT; SHEAR-STRESS; FLOW; GROWTH; DISSOLUTION; SIMULATION; DETACHMENT; DYNAMICS; IMPACT;
D O I
10.1016/j.advwatres.2024.104877
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Biofilms and their formation dynamics are ubiquitous and complex in porous media. The mechanism of biofilm formation on solute transport behavior remains limited, which inhibits potential biofilm applications such as bioremediation. In this study, we present a new numerical solver, BioFOAM, based on the micro-continuum theory, to simulate the coupled pore-scale processes of biofilm formation, fluid flow and solute transport in heterogeneous porous media. The BioFOAM explicitly solves the Darcy-Brinkman-Stokes equation, the convection-diffusion equation, and Monod kinetics in an iterative way. Benchmark tests are conducted to validate and quantify regimes of biofilm formation. We find that the competition among diffusion, advection, and the growth kinetics controls biofilm formation patterns. This competition partially explains the emergence of anomalous transport features in the growth-clogging regime when the growth kinetics dominate over diffusion and advection. When the growth kinetics, diffusion, and advection are comparable, the growth and decay processes of biofilm reach equilibrium. When advection dominates other processes, biofilm formation could not occur. Finally, we apply our model to simulate biofilm formation in real quartz sand media. We observe strong velocity intermittency in the growth-clogging regime in quartz sand media. The velocity probability density function p(u(x)) for low velocities follows a power law (p(u(x))proportional to u(x)(alpha), with |alpha| increasing from |alpha| <0.05 to |alpha| > 1), which corresponds to the intermittency that enhances solute spreading in the breakthrough curves with typical anomalous features. These results indicate that the BioFOAM model is able to quantify biofilm formation patterns and simulate the growing interest in the effects of biofilm on solute transport behavior at the pore scale.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Pore-Scale Coupling of Flow, Biofilm Growth, and Nutrient Transport: A Microcontinuum Approach
    Dawi, Malik A.
    Starnoni, Michele
    Porta, Giovanni
    Sanchez-Vila, Xavier
    WATER RESOURCES RESEARCH, 2024, 60 (11)
  • [22] Pore-scale quantification of colloid transport in saturated porous media
    Smith, Jennifer
    Gao, Bin
    Funabashi, Hisakage
    Tran, Thua N.
    Luo, Dan
    Ahner, Beth A.
    Steenhuis, Tammo S.
    Hay, Anthony G.
    Walter, M. Todd
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (02) : 517 - 523
  • [23] Pore-scale statistics of flow and transport through porous media
    Aramideh, Soroush
    Vlachos, Pavlos P.
    Ardekani, Arezoo M.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [24] Characteristics of pore-scale events and their impact on transport in porous media
    Sin, Sotheavuth
    Susanto, Wilson
    Nasir, Muhammad
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [25] Experimental analysis of pore-scale flow and transport in porous media
    Rashidi, M
    Peurrung, L
    Tompson, AFB
    Kulp, TJ
    ADVANCES IN WATER RESOURCES, 1996, 19 (03) : 163 - 180
  • [26] Characterisation of reactive transport in pore-scale correlated porous media
    Liu, Min
    Mostaghimi, Peyman
    CHEMICAL ENGINEERING SCIENCE, 2017, 173 : 121 - 130
  • [27] Pore-scale simulations of flow, transport, and reaction in porous media
    Chen, SY
    Zhang, DX
    Kang, QJ
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 49 - 60
  • [28] PORE-SCALE MODELING OF NATURAL CONVECTION IN RECONSTRUCTED POROUS MEDIA
    Liu, Zhenyu
    Wu, Huiying
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 1, 2016,
  • [29] Pore-scale Modeling Developments of Microcosmic Percolation in Porous Media
    Yang Yong Fei
    Yao Jun
    FLOW IN POROUS MEDIA - FROM PHENOMENA TO ENGINEERING AND BEYOND, 2009, : 212 - 221
  • [30] MODELING AND SIMULATION OF PORE-SCALE MULTIPHASE FLUID FLOW AND REACTIVE TRANSPORT IN FRACTURED AND POROUS MEDIA
    Meakin, Paul
    Tartakovsky, Alexandre M.
    REVIEWS OF GEOPHYSICS, 2009, 47