Pore-Scale Coupling of Flow, Biofilm Growth, and Nutrient Transport: A Microcontinuum Approach

被引:0
|
作者
Dawi, Malik A. [1 ,2 ]
Starnoni, Michele [2 ]
Porta, Giovanni [3 ]
Sanchez-Vila, Xavier [2 ]
机构
[1] Int Ctr Numer Methods Engn CIMNE, Barcelona, Spain
[2] Univ Politecn Cataluna, Hydrogeol Grp GHS, Barcelona, Spain
[3] Politecn Milano POLIMI, Dipartimento Ingn Civile & Ambientale, Milan, Italy
关键词
pore-scale modeling; biofilm growth; microcontinuum approach; POROUS-MEDIA; DETACHMENT; CONTINUUM; SYSTEMS; MODELS;
D O I
10.1029/2024WR038393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biofilms are microbial communities that influence the chemical and physical properties of porous media. Understanding their formation is essential for different topics, such as water management, bioremediation, and oil recovery. In this work, we present a pore-scale model for biofilm dynamics that is fully coupled with fluid flow and transport of growth-limiting nutrients. Built upon micro-continuum theory, the model considers biofilm as a fluid-filled micro-porous medium and simulates flow based on a coupled Darcy-Brinkman-Stokes model. We outline the key assumptions of the model and present the governing equations of biofilm dynamics, along with details of their numerical implementation. Through numerical simulations of biofilm development at the scale of a single pore, we analyze the influence of flow dynamics upon biofilm spatial distribution, as well as the way effective permeability is altered and evolves under different growth conditions. Our emphasis is on the critical hydrodynamic point, that is, the transition between bulky and dispersive biofilm shapes as a function of the driving parameters. We introduce a dimensionless number, termed Dt D-t, defined as the ratio between hydrodynamic and biomass cohesion forces, which provides a bulk characterization of the biomass-flow system, and allows to assess biofilm morphology and growth patterns. We then discuss results in relation to available experimental data, where estimated Dt values are in line with specific biofilm growth patterns, ranging from boundary-layer appearance Dt> 1 to bulky shapes Dt<1
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species
    Shin, Choah
    Alhammali, Azhar
    Bigler, Lisa
    Vohra, Naren
    Peszynska, Malgorzata
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (03) : 2097 - 2149
  • [2] Pore-Scale Model for Reactive Transport and Biomass Growth
    Tartakovsky, Alexandre M.
    Scheibe, Timothy D.
    Meakin, Paul
    JOURNAL OF POROUS MEDIA, 2009, 12 (05) : 417 - 434
  • [3] Interaction between biofilm growth and NAPL remediation: A pore-scale study
    Benioug, M.
    Golfier, F.
    Fischer, P.
    Oltean, C.
    Bues, M. A.
    Yang, X.
    ADVANCES IN WATER RESOURCES, 2019, 125 : 82 - 97
  • [4] Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and Perspectives
    V. Joekar-Niasar
    M. I. J. van Dijke
    S. M. Hassanizadeh
    Transport in Porous Media, 2012, 94 : 461 - 464
  • [5] Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and Perspectives
    Joekar-Niasar, V.
    van Dijke, M. I. J.
    Hassanizadeh, S. M.
    TRANSPORT IN POROUS MEDIA, 2012, 94 (02) : 461 - 464
  • [6] Pore-scale statistics of flow and transport through porous media
    Aramideh, Soroush
    Vlachos, Pavlos P.
    Ardekani, Arezoo M.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [7] Experimental analysis of pore-scale flow and transport in porous media
    Rashidi, M
    Peurrung, L
    Tompson, AFB
    Kulp, TJ
    ADVANCES IN WATER RESOURCES, 1996, 19 (03) : 163 - 180
  • [8] Dynamic coupling of pore-scale and reservoir-scale models for multiphase flow
    Sheng, Qiang
    Thompson, Karsten
    WATER RESOURCES RESEARCH, 2013, 49 (09) : 5973 - 5988
  • [9] Pore-scale simulations of flow, transport, and reaction in porous media
    Chen, SY
    Zhang, DX
    Kang, QJ
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 49 - 60
  • [10] Pore-scale flow and dispersion
    Maier, RS
    Kroll, DM
    Davis, HT
    Bernard, RS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1523 - 1533