MM3: Multimodal framework for regional-scale quantitative landslide risk analysis

被引:0
|
作者
Pollock, William [1 ,2 ]
Wartman, Joseph [2 ]
机构
[1] Shannon & Wilson Inc, 400 N 34th St,Suite 100, Seattle, WA 98103 USA
[2] Univ Washington, Dept Civil & Environm Engn, 201 More Hall, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Mass-wasting; Rockfall; Hazard; Risk assessment; Vulnerability; Coseismic; Precipitation-induced; Land use; Probabilistic analysis; Debris flow; VULNERABILITY ASSESSMENT; MOBILITY INDEX; ROCKFALL RISK; HAZARD; SHALLOW; STABILITY; SUSCEPTIBILITY; FRAGMENTATION; BUILDINGS; CLASSIFICATION;
D O I
10.1016/j.mex.2025.103218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantified estimates of landslide consequences in space and time (risk) facilitate rational land use decisions such as zoning for new development, protecting existing communities, allocating finite resources, designing mitigation works, and educating the public about natural hazards. Probabilistic landslide risk analysis (PLRA) should include all landslide modes, magnitudes, and triggering scenarios that could credibly cause harm and is most useful on a regional scale where landslide risk at a location can be compared across a broader area and in the context of other natural and anthropogenic sources of risk. However, to date, no readily transferable, regional-scale method for PLRA exists. In this work, we expand an existing deterministic multimodal method for landslide risk analysis developed in the country of Lebanon into a linked framework of code- based modules that are location-agnostic and computationally efficient for regional end-to-end risk estimation. center dot Use of near-global, remote-sensing-based inputs enables risk estimates almost anywhere in the world center dot Modular computational framework facilitates upgrades of component models as new research becomes available center dot Probabilistic implementation through a Monte Carlo approach
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Machine learning-based assessment of regional-scale variation of landslide susceptibility in central Vietnam
    Das, Raja
    Tien, Pham Van
    Wegmann, Karl W.
    Chakraborty, Madhumita
    PLOS ONE, 2024, 19 (10):
  • [42] Soft computing machine learning applications for assessing regional-scale landslide susceptibility in the Nepal Himalaya
    Manandhar, Bikesh
    Huynh, Thanh-Canh
    Bhattarai, Pawan Kumar
    Shrestha, Suchita
    Pradhan, Ananta Man Singh
    ENGINEERING COMPUTATIONS, 2024, 41 (03) : 655 - 681
  • [43] Transformational Regional-Scale Earthquake Simulations with the DOE EarthQuake SIMulation Exascale Framework
    McCallen, David
    Pitarka, Arben
    Tang, Houjun
    Pankajakshan, Ramesh
    Petersson, Anders
    Miah, Mamun
    COMPUTING IN SCIENCE & ENGINEERING, 2024, 26 (02) : 16 - 24
  • [44] Road density as a proxy for population density in regional-scale risk modeling
    Quinn, Pete
    NATURAL HAZARDS, 2013, 65 (03) : 1227 - 1248
  • [45] Road density as a proxy for population density in regional-scale risk modeling
    Pete Quinn
    Natural Hazards, 2013, 65 : 1227 - 1248
  • [46] Climate Aridity and Land Use Changes: A Regional-Scale Analysis
    Salvati, L.
    Perini, L.
    Sabbi, A.
    Bajocco, S.
    GEOGRAPHICAL RESEARCH, 2012, 50 (02) : 193 - 203
  • [47] Landsat analysis for evaluating spatiotemporal changes of regional-scale landscapes
    Yamamoto, Y
    Yamada, Y
    Hayashi, Y
    Asaka, T
    Suzuoki, Y
    Iwashita, K
    Nishikawa, H
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2299 - 2302
  • [48] Regional-scale back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in sparse data regions
    Luke Weidner
    Thomas Oommen
    Rüdiger Escobar-Wolf
    K. S. Sajinkumar
    Rinu A. Samuel
    Landslides, 2018, 15 : 2343 - 2356
  • [49] Regional-scale back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in sparse data regions
    Weidner, Luke
    Oommen, Thomas
    Escobar-Wolf, Rudiger
    Sajinkumar, K. S.
    Samuel, Rinu A.
    LANDSLIDES, 2018, 15 (12) : 2343 - 2356
  • [50] Landslide quantitative risk analysis of buildings at the municipal scale based on a rainfall triggering scenario
    Pereira, Susana
    Garcia, Ricardo A. C.
    Zezere, Jose Luis
    Oliveira, Sergio Cruz
    Silva, Marcio
    GEOMATICS NATURAL HAZARDS & RISK, 2017, 8 (02) : 624 - 648