MM3: Multimodal framework for regional-scale quantitative landslide risk analysis

被引:0
|
作者
Pollock, William [1 ,2 ]
Wartman, Joseph [2 ]
机构
[1] Shannon & Wilson Inc, 400 N 34th St,Suite 100, Seattle, WA 98103 USA
[2] Univ Washington, Dept Civil & Environm Engn, 201 More Hall, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Mass-wasting; Rockfall; Hazard; Risk assessment; Vulnerability; Coseismic; Precipitation-induced; Land use; Probabilistic analysis; Debris flow; VULNERABILITY ASSESSMENT; MOBILITY INDEX; ROCKFALL RISK; HAZARD; SHALLOW; STABILITY; SUSCEPTIBILITY; FRAGMENTATION; BUILDINGS; CLASSIFICATION;
D O I
10.1016/j.mex.2025.103218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantified estimates of landslide consequences in space and time (risk) facilitate rational land use decisions such as zoning for new development, protecting existing communities, allocating finite resources, designing mitigation works, and educating the public about natural hazards. Probabilistic landslide risk analysis (PLRA) should include all landslide modes, magnitudes, and triggering scenarios that could credibly cause harm and is most useful on a regional scale where landslide risk at a location can be compared across a broader area and in the context of other natural and anthropogenic sources of risk. However, to date, no readily transferable, regional-scale method for PLRA exists. In this work, we expand an existing deterministic multimodal method for landslide risk analysis developed in the country of Lebanon into a linked framework of code- based modules that are location-agnostic and computationally efficient for regional end-to-end risk estimation. center dot Use of near-global, remote-sensing-based inputs enables risk estimates almost anywhere in the world center dot Modular computational framework facilitates upgrades of component models as new research becomes available center dot Probabilistic implementation through a Monte Carlo approach
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Uncertainty analysis for regional-scale reserve selection
    Moilanen, Atte
    Wintle, Brendan A.
    Elith, Jane
    Burgman, Mark
    CONSERVATION BIOLOGY, 2006, 20 (06) : 1688 - 1697
  • [22] Long-range Ising model for regional-scale seismic risk analysis
    Oh, Sebin
    Yi, Sangri
    Wang, Ziqi
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (12): : 3904 - 3923
  • [23] A framework for evaluating regional-scale numerical photochemical modeling systems
    Dennis, Robin
    Fox, Tyler
    Fuentes, Montse
    Gilliland, Alice
    Hanna, Steven
    Hogrefe, Christian
    Irwin, John
    Rao, S. Trivikrama
    Scheffe, Richard
    Schere, Kenneth
    Steyn, Douw
    Venkatram, Akula
    ENVIRONMENTAL FLUID MECHANICS, 2010, 10 (04) : 471 - 489
  • [24] A framework for evaluating regional-scale numerical photochemical modeling systems
    Robin Dennis
    Tyler Fox
    Montse Fuentes
    Alice Gilliland
    Steven Hanna
    Christian Hogrefe
    John Irwin
    S. Trivikrama Rao
    Richard Scheffe
    Kenneth Schere
    Douw Steyn
    Akula Venkatram
    Environmental Fluid Mechanics, 2010, 10 : 471 - 489
  • [25] Discussion: A methodology for regional-scale flood risk assessment
    Redaelli, Marco
    Dyer, Mark
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2009, 162 (05) : 347 - 347
  • [26] MM3(92) analysis of inositol ring puckering
    Dowd, MK
    French, AD
    Reilly, PJ
    AUSTRALIAN JOURNAL OF CHEMISTRY, 1996, 49 (03) : 327 - 335
  • [27] GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors
    Pellicani, Roberta
    Argentiero, Ilenia
    Spilotro, Giuseppe
    GEOMATICS NATURAL HAZARDS & RISK, 2017, 8 (02) : 1012 - 1033
  • [28] Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India
    Vikram Gupta
    Sandeep Kumar
    Ramandeep Kaur
    Ruchika S Tandon
    Journal of Earth System Science, 2022, 131
  • [29] GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study
    Manzo, G.
    Tofani, V.
    Segoni, S.
    Battistini, A.
    Catani, F.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (07) : 1433 - 1452
  • [30] Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India
    Gupta, Vikram
    Kumar, Sandeep
    Kaur, Ramandeep
    Tandon, Ruchika S.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2022, 131 (01)