Customized Branched Neural Network-Aided Shuffled Min-Sum Decoder for Protograph LDPC Codes

被引:0
|
作者
Wang, Yurong [1 ]
Lv, Liang [1 ]
Fang, Yi [1 ]
Li, Yonghui [2 ]
Mumtaz, Shahid [3 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] Nottingham Trent Univ, Dept Comp Sci, Nottingham NG1 4FQ, England
[4] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi do, South Korea
基金
中国国家自然科学基金;
关键词
Decoding; Codes; Iterative decoding; Training; Convergence; Iterative methods; Biological neural networks; Branched neuron mean difference (BNMD); customized branched neural network (CBNN); model-driven deep learning; neural shuffled min-sum decoder (NSMS); protograph LDPC codes; PARITY-CHECK CODES; BELIEF-PROPAGATION; DESIGN; 5G; OPTIMIZATION; CAPACITY; SYSTEMS;
D O I
10.1109/TVT.2024.3459692
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper designs a novel neural shuffled min-sum (NSMS) decoder with the model-driven deep learning method to achieve higher efficient and lower complexity decoding for protograph low-density parity-check (LDPC) codes. We propose a new type of customized branched neural network (CBNN) structure, which integrates shuffled min-sum (SMS) decoding algorithm and shuffled belief-propagation (SBP) decoding algorithm. In such a network structure, we can adjust layer arrangement and simplify parameter groups at a specific stage (i.e., training or inference stage) to reduce the unwarranted computational workload. Furthermore, we utilize the branched neuron mean difference (BNMD) to optimize the training targets of the proposed NSMS decoder, which significantly accelerates the convergence speed of the network. Analytical and simulation results show that the proposed NSMS decoder can achieve better performance than the state-of-the-art counterparts in terms of convergence speed, error rate and computational complexity.
引用
收藏
页码:1399 / 1415
页数:17
相关论文
共 50 条
  • [1] NEURAL LAYERED MIN-SUM DECODING FOR PROTOGRAPH LDPC CODES
    Zhang, Dexin
    Dai, Jincheng
    Tan, Kailin
    Niu, Kai
    Chen, Mingzhe
    Poor, H. Vincent
    Cui, Shuguang
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4845 - 4849
  • [2] Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes
    Kim, Taehyun
    Park, Joo Sung
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (07) : 1504 - 1508
  • [3] An Enhanced Offset Min-Sum decoder for 50 LDPC Codes
    Cui, Hangxuan
    Khoa Le Trung
    Ghaffari, Fakhreddine
    Declercq, David
    Lin, Jun
    Wang, Zhongfeng
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 490 - 495
  • [4] Neural Adjusted Min-Sum Decoding for LDPC Codes
    Yu, Haochen
    Zhao, Ming-Min
    Lei, Ming
    Zhao, Min-Jian
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [5] Neural Min-Sum Decoding for Generalized LDPC Codes
    Kwak, Hee-Youl
    Kim, Jae-Won
    Kim, Yongjune
    Kim, Sang-Hyo
    No, Jong-Seon
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2841 - 2845
  • [6] Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes
    Oh, Daesun
    Parhi, Keshab K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (01) : 105 - 115
  • [7] Energy optimization of quantized min-sum decoders for protograph-based LDPC codes
    Mohamed Yaoumi
    Elsa Dupraz
    François Leduc-Primeau
    Frederic Guilloud
    Annals of Telecommunications, 2020, 75 : 615 - 621
  • [8] Energy optimization of quantized min-sum decoders for protograph-based LDPC codes
    Yaoumi, Mohamed
    Dupraz, Elsa
    Leduc-Primeau, Francois
    Guilloud, Frederic
    ANNALS OF TELECOMMUNICATIONS, 2020, 75 (11-12) : 615 - 621
  • [9] Learning strategies for neural min-sum decoding of LDPC codes
    Na, Hyeyeon
    Park, Hosung
    Kwak, Hee-Youl
    Ahn, Seok-Ki
    ICT EXPRESS, 2025, 11 (01): : 161 - 166
  • [10] Normalized Min-Sum Neural Network for LDPC Decoding
    Wang, Qing
    Liu, Qing
    Wang, Shunfu
    Chen, Leian
    Fang, Haoyu
    Chen, Luyong
    Guo, Yuzhang
    Wu, Zhiqiang
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (01) : 70 - 81