Customized Branched Neural Network-Aided Shuffled Min-Sum Decoder for Protograph LDPC Codes

被引:0
|
作者
Wang, Yurong [1 ]
Lv, Liang [1 ]
Fang, Yi [1 ]
Li, Yonghui [2 ]
Mumtaz, Shahid [3 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] Nottingham Trent Univ, Dept Comp Sci, Nottingham NG1 4FQ, England
[4] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi do, South Korea
基金
中国国家自然科学基金;
关键词
Decoding; Codes; Iterative decoding; Training; Convergence; Iterative methods; Biological neural networks; Branched neuron mean difference (BNMD); customized branched neural network (CBNN); model-driven deep learning; neural shuffled min-sum decoder (NSMS); protograph LDPC codes; PARITY-CHECK CODES; BELIEF-PROPAGATION; DESIGN; 5G; OPTIMIZATION; CAPACITY; SYSTEMS;
D O I
10.1109/TVT.2024.3459692
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper designs a novel neural shuffled min-sum (NSMS) decoder with the model-driven deep learning method to achieve higher efficient and lower complexity decoding for protograph low-density parity-check (LDPC) codes. We propose a new type of customized branched neural network (CBNN) structure, which integrates shuffled min-sum (SMS) decoding algorithm and shuffled belief-propagation (SBP) decoding algorithm. In such a network structure, we can adjust layer arrangement and simplify parameter groups at a specific stage (i.e., training or inference stage) to reduce the unwarranted computational workload. Furthermore, we utilize the branched neuron mean difference (BNMD) to optimize the training targets of the proposed NSMS decoder, which significantly accelerates the convergence speed of the network. Analytical and simulation results show that the proposed NSMS decoder can achieve better performance than the state-of-the-art counterparts in terms of convergence speed, error rate and computational complexity.
引用
收藏
页码:1399 / 1415
页数:17
相关论文
共 50 条
  • [21] Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes
    Kang, Peng
    Cai, Kui
    He, Xuan
    ELECTRONICS, 2022, 11 (19)
  • [22] Improved min-sum decoding algorithms for irregular LDPC codes
    Chen, JH
    Tanner, RM
    Jones, C
    Li, Y
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 449 - 453
  • [23] A bottom-up design methodology of neural min-sum decoders for LDPC codes
    Li, Guangwen
    Yu, Xiao
    Luo, Yuan
    Wei, Guangfen
    IET COMMUNICATIONS, 2023, 17 (03) : 377 - 386
  • [24] Optimized Quantization and Scaling of Layered LDPC Scaled Min-Sum Decoder
    Emran, Ahmed A.
    Elsabrouty, Maha
    Muta, Osamu
    Furukawa, Hiroshi
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2668 - 2672
  • [25] A Modified Offset Min-Sum Decoding Algorithm for LDPC Codes
    Xu, Meng
    Wu, Jianhui
    Zhang, Meng
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 3, 2010, : 19 - 22
  • [26] Offset and Normalized Min-Sum Algorithms for ATSC 3.0 LDPC Decoder
    Myung, Seho
    Park, Sung-Ik
    Kim, Kyung-Joong
    Lee, Jae-Young
    Kwon, Sunhyoung
    Kim, Jeongchang
    IEEE TRANSACTIONS ON BROADCASTING, 2017, 63 (04) : 734 - 739
  • [27] Self-Corrected Min-Sum decoding of LDPC codes
    Savin, Valentin
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 146 - 150
  • [28] OPTIMALLY QUANTIZED OFFSET MIN-SUM ALGORITHM FOR FLEXIBLE LDPC DECODER
    Oh, Daesun
    Parhi, Keshab K.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1886 - 1891
  • [29] Min-sum decoding algorithm for LDPC codes based on integer operation
    Ye, Xiao-Dong
    Ma, Lin-Hua
    Wang, Wei-Min
    Li, Sen
    Tongxin Xuebao/Journal on Communications, 2010, 31 (06): : 106 - 111
  • [30] Comparison of Parallelization Strategies for Min-Sum Decoding of Irregular LDPC Codes
    Xu, Hua
    Wan, Wei
    Wang, Wei
    Wang, Jun
    Yang, Jiadong
    Wen, Yun
    TSINGHUA SCIENCE AND TECHNOLOGY, 2013, 18 (06) : 577 - 587