Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging

被引:0
|
作者
Fujima, Noriyuki [1 ]
Shimizu, Yukie [1 ]
Ikebe, Yohei [2 ,3 ]
Kameda, Hiroyuki [4 ]
Harada, Taisuke [1 ]
Tsushima, Nayuta [5 ,6 ]
Kano, Satoshi [5 ,6 ]
Homma, Akihiro [5 ,6 ]
Kwon, Jihun [7 ]
Yoneyama, Masami [7 ]
Kudo, Kohsuke [1 ,2 ,8 ,9 ]
机构
[1] Hokkaido Univ Hosp, Dept Diagnost & Intervent Radiol, N14 W5,Kita Ku, Sapporo 0608638, Japan
[2] Hokkaido Univ, Grad Sch Med, Dept Diagnost Imaging, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[3] Hokkaido Univ, Fac Med, Ctr Cause Death Invest, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[4] Hokkaido Univ, Fac Dent Med, Dept Radiol, N13 W7,Kita Ku, Sapporo, Hokkaido 0608586, Japan
[5] Hokkaido Univ, Fac Med, Dept Otolaryngol Head & Neck Surg, N15 W7,Kita Ku, Sapporo 0608638, Japan
[6] Hokkaido Univ, Grad Sch Med, N15 W7,Kita Ku, Sapporo 0608638, Japan
[7] Philips Japan, 3-37 Kohnan 2-Chome,Minato Ku, Tokyo 1088507, Japan
[8] Hokkaido Univ, Fac Med, Clin AI Human Resources Dev Program, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[9] Hokkaido Univ, Fac Med, Global Ctr Biomed Sci & Engn, N14 W5,Kita Ku, Sapporo, Hokkaido 0608638, Japan
关键词
Head and neck; MRI; Deep learning reconstruction; Super-resolution; INTELLIGENCE;
D O I
10.1007/s11604-025-01756-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To assess the utility of dual-type deep learning (DL)-based image reconstruction with DL-based image denoising and super-resolution processing by comparing images reconstructed with the conventional method in head and neck fat-suppressed (Fs) T2-weighted imaging (T2WI). Materials and methods We retrospectively analyzed the cases of 43 patients who underwent head/neck Fs-T2WI for the assessment of their head and neck lesions. All patients underwent two sets of Fs-T2WI scans with conventional- and DL-based reconstruction. The Fs-T2WI with DL-based reconstruction was acquired based on a 30% reduction of its spatial resolution in both the x- and y-axes with a shortened scan time. Qualitative and quantitative assessments were performed with both the conventional method- and DL-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, visibility of anatomical structures, degree of artifact(s), lesion conspicuity, and lesion edge sharpness based on five-point grading. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the lesion and the contrast-to-noise ratio (CNR) between the lesion and the adjacent or nearest muscle. Results In the qualitative analysis, significant differences were observed between the Fs-T2WI with the conventional- and DL-based reconstruction in all of the evaluation items except the degree of the artifact(s) (p < 0.001). In the quantitative analysis, significant differences were observed in the SNR between the Fs-T2WI with conventional- (21.4 +/- 14.7) and DL-based reconstructions (26.2 +/- 13.5) (p < 0.001). In the CNR assessment, the CNR between the lesion and adjacent or nearest muscle in the DL-based Fs-T2WI (16.8 +/- 11.6) was significantly higher than that in the conventional Fs-T2WI (14.2 +/- 12.9) (p < 0.001). Conclusion Dual-type DL-based image reconstruction by an effective denoising and super-resolution process successfully provided high image quality in head and neck Fs-T2WI with a shortened scan time compared to the conventional imaging method.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging
    Korte, James C.
    Hardcastle, Nicholas
    Ng, Sweet Ping
    Clark, Brett
    Kron, Tomas
    Jackson, Price
    MEDICAL PHYSICS, 2021, 48 (12) : 7757 - 7772
  • [42] TARGET IMAGE PROCESSING BASED ON SUPER-RESOLUTION RECONSTRUCTION AND MACHINE LEARNING ALGORITHM
    Liu, Chunmao
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (03): : 1332 - 1340
  • [43] TARGET IMAGE PROCESSING BASED ON SUPER-RESOLUTION RECONSTRUCTION AND MACHINE LEARNING ALGORITHM
    Liu C.
    Scalable Computing, 2024, 25 (03): : 1332 - 1340
  • [44] Impact of deep learning-based image super-resolution on binary signal detection
    Zhang, Xiaohui
    Kelkar, Varun A.
    Granstedt, Jason
    Li, Hua
    Anastasio, Mark A.
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (06)
  • [45] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [46] Performance Analysis of JPEG XR with Deep Learning-Based Image Super-Resolution
    Min, Taingliv
    Aramvith, Supavadee
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1192 - 1197
  • [47] A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution
    Li, Juncheng
    Pei, Zehua
    Li, Wenjie
    Gao, Guangwei
    Wang, Longguang
    Wang, Yingqian
    Zeng, Tieyong
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [48] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [49] Deep learning-based image super-resolution considering quantitative and perceptual quality
    Choi, Jun-Ho
    Kim, Jun-Hyuk
    Cheon, Manri
    Lee, Jong-Seok
    NEUROCOMPUTING, 2020, 398 (398) : 347 - 359
  • [50] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133