Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging

被引:0
|
作者
Fujima, Noriyuki [1 ]
Shimizu, Yukie [1 ]
Ikebe, Yohei [2 ,3 ]
Kameda, Hiroyuki [4 ]
Harada, Taisuke [1 ]
Tsushima, Nayuta [5 ,6 ]
Kano, Satoshi [5 ,6 ]
Homma, Akihiro [5 ,6 ]
Kwon, Jihun [7 ]
Yoneyama, Masami [7 ]
Kudo, Kohsuke [1 ,2 ,8 ,9 ]
机构
[1] Hokkaido Univ Hosp, Dept Diagnost & Intervent Radiol, N14 W5,Kita Ku, Sapporo 0608638, Japan
[2] Hokkaido Univ, Grad Sch Med, Dept Diagnost Imaging, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[3] Hokkaido Univ, Fac Med, Ctr Cause Death Invest, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[4] Hokkaido Univ, Fac Dent Med, Dept Radiol, N13 W7,Kita Ku, Sapporo, Hokkaido 0608586, Japan
[5] Hokkaido Univ, Fac Med, Dept Otolaryngol Head & Neck Surg, N15 W7,Kita Ku, Sapporo 0608638, Japan
[6] Hokkaido Univ, Grad Sch Med, N15 W7,Kita Ku, Sapporo 0608638, Japan
[7] Philips Japan, 3-37 Kohnan 2-Chome,Minato Ku, Tokyo 1088507, Japan
[8] Hokkaido Univ, Fac Med, Clin AI Human Resources Dev Program, N15 W7,Kita Ku, Sapporo, Hokkaido 0608638, Japan
[9] Hokkaido Univ, Fac Med, Global Ctr Biomed Sci & Engn, N14 W5,Kita Ku, Sapporo, Hokkaido 0608638, Japan
关键词
Head and neck; MRI; Deep learning reconstruction; Super-resolution; INTELLIGENCE;
D O I
10.1007/s11604-025-01756-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To assess the utility of dual-type deep learning (DL)-based image reconstruction with DL-based image denoising and super-resolution processing by comparing images reconstructed with the conventional method in head and neck fat-suppressed (Fs) T2-weighted imaging (T2WI). Materials and methods We retrospectively analyzed the cases of 43 patients who underwent head/neck Fs-T2WI for the assessment of their head and neck lesions. All patients underwent two sets of Fs-T2WI scans with conventional- and DL-based reconstruction. The Fs-T2WI with DL-based reconstruction was acquired based on a 30% reduction of its spatial resolution in both the x- and y-axes with a shortened scan time. Qualitative and quantitative assessments were performed with both the conventional method- and DL-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, visibility of anatomical structures, degree of artifact(s), lesion conspicuity, and lesion edge sharpness based on five-point grading. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the lesion and the contrast-to-noise ratio (CNR) between the lesion and the adjacent or nearest muscle. Results In the qualitative analysis, significant differences were observed between the Fs-T2WI with the conventional- and DL-based reconstruction in all of the evaluation items except the degree of the artifact(s) (p < 0.001). In the quantitative analysis, significant differences were observed in the SNR between the Fs-T2WI with conventional- (21.4 +/- 14.7) and DL-based reconstructions (26.2 +/- 13.5) (p < 0.001). In the CNR assessment, the CNR between the lesion and adjacent or nearest muscle in the DL-based Fs-T2WI (16.8 +/- 11.6) was significantly higher than that in the conventional Fs-T2WI (14.2 +/- 12.9) (p < 0.001). Conclusion Dual-type DL-based image reconstruction by an effective denoising and super-resolution process successfully provided high image quality in head and neck Fs-T2WI with a shortened scan time compared to the conventional imaging method.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Deep learning-based magnetic resonance image super-resolution: a survey
    Ji Z.
    Zou B.
    Kui X.
    Liu J.
    Zhao W.
    Zhu C.
    Dai P.
    Dai Y.
    Neural Computing and Applications, 2024, 36 (21) : 12725 - 12752
  • [22] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [23] Endoscopic Image Deblurring and Super-Resolution Reconstruction Based on Deep Learning
    Yang, Xirui
    Chen, Yue
    Tao, Rui
    Zhang, Yue
    Liu, Zhiwen
    Shi, Yonggang
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 168 - 172
  • [24] Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning
    Pan Mengxue
    Qu Ning
    Xia Yeru
    Yang Deyong
    Wang Hongyu
    Liu Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [25] Image super-resolution reconstruction based on sparse representation and deep learning
    Zhang, Jing
    Shao, Minhao
    Yu, Lulu
    Li, Yunsong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 87
  • [26] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [27] A review of single image super-resolution reconstruction based on deep learning
    Yu, Ming
    Shi, Jiecong
    Xue, Cuihong
    Hao, Xiaoke
    Yan, Gang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55921 - 55962
  • [28] Image Super-resolution Reconstruction based on Deep Learning and Sparse Representation
    Lei, Qian
    Zhang, Zhao-hui
    Hao, Cun-ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 546 - 555
  • [29] Image super-resolution reconstruction based on deep dictionary learning and A+
    Yi Huang
    Weixin Bian
    Biao Jie
    Zhiqiang Zhu
    Wenhu Li
    Signal, Image and Video Processing, 2024, 18 : 2629 - 2641
  • [30] A review of single image super-resolution reconstruction based on deep learning
    Ming Yu
    Jiecong Shi
    Cuihong Xue
    Xiaoke Hao
    Gang Yan
    Multimedia Tools and Applications, 2024, 83 : 55921 - 55962