Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization

被引:3
|
作者
Bostami, Biozid [1 ]
Espinoza, Flor A. [1 ]
van der Horn, Harm J. [2 ]
van der Naalt, Joukje [2 ]
Calhoun, Vince D. [1 ]
Vergara, Victor M. [1 ]
机构
[1] Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Neurol, Groningen, Netherlands
关键词
D O I
10.1109/EMBC48229.2022.9871869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traumatic brain injury (TBI) can drastically affect an individual's cognition, physical, emotional wellbeing, and behavior. Even patients with mild TBI (mTBI) may suffer from a variety of long-lasting symptoms, which motivates researchers to find better biomarkers. Machine learning algorithms have shown promising results in detecting mTBI from resting-state functional network connectivity (rsFNC) data. However, data collected at multiple sites introduces additional noise called site-effects, resulting in erroneous conclusions. Site errors are controlled through a process called harmonization, but its use in classifying neuroimaging data has been addressed lightly. With the ongoing need to improve mTBI detection, this study shows that harmonization should be integrated into the machine learning process when working with multi-site neuroimaging datasets.
引用
收藏
页码:537 / 540
页数:4
相关论文
共 50 条
  • [1] Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images
    Liu, Yilin
    Kirk, Gregory R.
    Nacewicz, Brendon M.
    Styner, Martin A.
    Shen, Mingren
    Nie, Dong
    Adluru, Nagesh
    Yeske, Benjamin
    Ferrazzano, Peter A.
    Alexander, Andrew L.
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER AND MEDICAL IMAGE LEARNING WITH LESS LABELS AND IMPERFECT DATA, DART 2019, MIL3ID 2019, 2019, 11795 : 81 - 89
  • [2] Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines
    Tate, David F.
    Dennis, Emily L.
    Adams, John T.
    Adamson, Maheen M.
    Belanger, Heather G.
    Bigler, Erin D.
    Bouchard, Heather C.
    Clark, Alexandra L.
    Delano-Wood, Lisa M.
    Disner, Seth G.
    Eapen, Blessen C.
    Franz, Carol E.
    Geuze, Elbert
    Goodrich-Hunsaker, Naomi J.
    Han, Kihwan
    Hayes, Jasmeet P.
    Hinds, Sidney R., II
    Hodges, Cooper B.
    Hovenden, Elizabeth S.
    Irimia, Andrei
    Kenney, Kimbra
    Koerte, Inga K.
    Kremen, William S.
    Levin, Harvey S.
    Lindsey, Hannah M.
    Morey, Rajendra A.
    Newsome, Mary R.
    Ollinger, John
    Pugh, Mary Jo
    Scheibel, Randall S.
    Shenton, Martha E.
    Sullivan, Danielle R.
    Taylor, Brian A.
    Troyanskaya, Maya
    Velez, Carmen
    Wade, Benjamin S. C.
    Wang, Xin
    Ware, Ashley L.
    Zafonte, Ross
    Thompson, Paul M.
    Wilde, Elisabeth A.
    BRAIN IMAGING AND BEHAVIOR, 2021, 15 (02) : 585 - 613
  • [3] Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines
    David F Tate
    Emily L Dennis
    John T Adams
    Maheen M Adamson
    Heather G Belanger
    Erin D Bigler
    Heather C Bouchard
    Alexandra L Clark
    Lisa M Delano-Wood
    Seth G Disner
    Blessen C Eapen
    Carol E Franz
    Elbert Geuze
    Naomi J Goodrich-Hunsaker
    Kihwan Han
    Jasmeet P Hayes
    Sidney R Hinds
    Cooper B Hodges
    Elizabeth S Hovenden
    Andrei Irimia
    Kimbra Kenney
    Inga K Koerte
    William S Kremen
    Harvey S Levin
    Hannah M Lindsey
    Rajendra A Morey
    Mary R Newsome
    John Ollinger
    Mary Jo Pugh
    Randall S Scheibel
    Martha E Shenton
    Danielle R. Sullivan
    Brian A Taylor
    Maya Troyanskaya
    Carmen Velez
    Benjamin SC Wade
    Xin Wang
    Ashley L Ware
    Ross Zafonte
    Paul M Thompson
    Elisabeth A Wilde
    Brain Imaging and Behavior, 2021, 15 : 585 - 613
  • [4] Applications of Machine Learning in Prognostication of Mild Traumatic Brain Injury
    Yao, Patrick F.
    Gandhi, Pranjan A.
    Mcmullen, Eric P.
    Manka, Marlin
    Liang, Jason
    AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2025, 104 (02) : 146 - 151
  • [5] Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury
    Remedios, Samuel
    Roy, Snehashis
    Blaber, Justin
    Bermudez, Camilo
    Nath, Vishwesh
    Patel, Mayur B.
    Butman, John A.
    Landman, Bennett A.
    Pham, Dzung L.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [6] Correlates of traumatic brain injury among juvenile offenders: A multi-site study
    Vaughn, Michael G.
    Salas-Wright, Christopher P.
    Delisi, Matt
    Perron, Brian
    CRIMINAL BEHAVIOUR AND MENTAL HEALTH, 2014, 24 (03) : 188 - 203
  • [7] Machine Learning Classification of Mild Traumatic Brain Injury Using Whole-Brain Functional Activity: A Radiomics Analysis
    Luo, Xiaoping
    Lin, Dezhao
    Xia, Shengwei
    Wang, Dongyu
    Weng, Xinmang
    Huang, Wenming
    Ye, Hongda
    DISEASE MARKERS, 2021, 2021
  • [8] CLASSIFICATION OF THE SPECTRUM OF MILD TRAUMATIC BRAIN INJURY
    ESSELMAN, PC
    UOMOTO, JM
    BRAIN INJURY, 1995, 9 (04) : 417 - 424
  • [9] Applicability of machine learning technique in the screening of patients with mild traumatic brain injury
    Terabe, Miriam Leiko
    Massago, Miyoko
    Iora, Pedro Henrique
    Rocha, Thiago Augusto Hernandes
    de Souza, Joao Vitor Perez
    Huo, Lily
    Massago, Mamoru
    Senda, Dalton Makoto
    Kobayashi, Elisabete Mitiko
    Vissoci, Joao Ricardo
    Staton, Catherine Ann
    de Andrade, Luciano
    PLOS ONE, 2023, 18 (08):
  • [10] Real-time multi-site multi-parametric monitoring of rat brain subjected to traumatic brain injury
    Manor, Tami
    Barbiro-Michaely, Efrat
    Rogatsky, Genady
    Mayevsky, Avraham
    NEUROLOGICAL RESEARCH, 2008, 30 (10) : 1075 - 1083