Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization

被引:3
|
作者
Bostami, Biozid [1 ]
Espinoza, Flor A. [1 ]
van der Horn, Harm J. [2 ]
van der Naalt, Joukje [2 ]
Calhoun, Vince D. [1 ]
Vergara, Victor M. [1 ]
机构
[1] Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Neurol, Groningen, Netherlands
关键词
D O I
10.1109/EMBC48229.2022.9871869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traumatic brain injury (TBI) can drastically affect an individual's cognition, physical, emotional wellbeing, and behavior. Even patients with mild TBI (mTBI) may suffer from a variety of long-lasting symptoms, which motivates researchers to find better biomarkers. Machine learning algorithms have shown promising results in detecting mTBI from resting-state functional network connectivity (rsFNC) data. However, data collected at multiple sites introduces additional noise called site-effects, resulting in erroneous conclusions. Site errors are controlled through a process called harmonization, but its use in classifying neuroimaging data has been addressed lightly. With the ongoing need to improve mTBI detection, this study shows that harmonization should be integrated into the machine learning process when working with multi-site neuroimaging datasets.
引用
收藏
页码:537 / 540
页数:4
相关论文
共 50 条
  • [21] Extracting the most discriminating functional connections in mild traumatic brain injury based on machine learning
    Teng, Jing
    Liu, Wuyi
    Mi, Chunlin
    Zhang, Honglei
    Shi, Jian
    Li, Na
    NEUROSCIENCE LETTERS, 2023, 810
  • [22] Learning multi-site harmonization of magnetic resonance images without traveling human phantoms
    Siyuan Liu
    Pew-Thian Yap
    Communications Engineering, 3 (1):
  • [23] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Belov, Vladimir
    Erwin-Grabner, Tracy
    Aghajani, Moji
    Aleman, Andre
    Amod, Alyssa R.
    Basgoze, Zeynep
    Benedetti, Francesco
    Besteher, Bianca
    Buelow, Robin
    Ching, Christopher R. K.
    Connolly, Colm G.
    Cullen, Kathryn
    Davey, Christopher G.
    Dima, Danai
    Dols, Annemiek
    Evans, Jennifer W.
    Fu, Cynthia H. Y.
    Gonul, Ali Saffet
    Gotlib, Ian H.
    Grabe, Hans J.
    Groenewold, Nynke
    Hamilton, J. Paul
    Harrison, Ben J.
    Ho, Tiffany C.
    Mwangi, Benson
    Jaworska, Natalia
    Jahanshad, Neda
    Klimes-Dougan, Bonnie
    Koopowitz, Sheri-Michelle
    Lancaster, Thomas
    Li, Meng
    Linden, David E. J.
    MacMaster, Frank P.
    Mehler, David M. A.
    Melloni, Elisa
    Mueller, Bryon A.
    Ojha, Amar
    Oudega, Mardien L.
    Penninx, Brenda W. J. H.
    Poletti, Sara
    Pomarol-Clotet, Edith
    Portella, Maria J.
    Pozzi, Elena
    Reneman, Liesbeth
    Sacchet, Matthew D.
    Saemann, Philipp G.
    Schrantee, Anouk
    Sim, Kang
    Soares, Jair C.
    Stein, Dan J.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [24] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Vladimir Belov
    Tracy Erwin-Grabner
    Moji Aghajani
    Andre Aleman
    Alyssa R. Amod
    Zeynep Basgoze
    Francesco Benedetti
    Bianca Besteher
    Robin Bülow
    Christopher R. K. Ching
    Colm G. Connolly
    Kathryn Cullen
    Christopher G. Davey
    Danai Dima
    Annemiek Dols
    Jennifer W. Evans
    Cynthia H. Y. Fu
    Ali Saffet Gonul
    Ian H. Gotlib
    Hans J. Grabe
    Nynke Groenewold
    J Paul Hamilton
    Ben J. Harrison
    Tiffany C. Ho
    Benson Mwangi
    Natalia Jaworska
    Neda Jahanshad
    Bonnie Klimes-Dougan
    Sheri-Michelle Koopowitz
    Thomas Lancaster
    Meng Li
    David E. J. Linden
    Frank P. MacMaster
    David M. A. Mehler
    Elisa Melloni
    Bryon A. Mueller
    Amar Ojha
    Mardien L. Oudega
    Brenda W. J. H. Penninx
    Sara Poletti
    Edith Pomarol-Clotet
    Maria J. Portella
    Elena Pozzi
    Liesbeth Reneman
    Matthew D. Sacchet
    Philipp G. Sämann
    Anouk Schrantee
    Kang Sim
    Jair C. Soares
    Dan J. Stein
    Scientific Reports, 14
  • [25] A Brain Electrical Activity Electroencephalographic-Based Biomarker of Functional Impairment in Traumatic Brain Injury: A Multi-Site Validation Trial
    Hanley, Daniel
    Prichep, Leslie S.
    Badjatia, Neeraj
    Bazarian, Jeffrey
    Chiacchierini, Richard
    Curley, Kenneth C.
    Garrett, John
    Jones, Elizabeth
    Naunheim, Rosanne
    O'Neil, Brian
    O'Neill, John
    Wright, David W.
    Huff, J. Stephen
    JOURNAL OF NEUROTRAUMA, 2018, 35 (01) : 41 - 47
  • [26] Mild traumatic brain injury: not always a mild injury
    Schellenberg, Morgan
    Arase, Miharu
    Wong, Monica D.
    Demetriades, Demetrios
    EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2024, 50 (04) : 1229 - 1235
  • [27] Amantadine Did Not Positively Impact Cognition in Chronic Traumatic Brain Injury: A Multi-Site, Randomized, Controlled Trial
    Hammond, Flora M.
    Sherer, Mark
    Malec, James F.
    Zafonte, Ross D.
    Dikmen, Sureyya
    Bogner, Jennifer
    Bell, Kathleen R.
    Barber, Jason
    Temkin, Nancy
    JOURNAL OF NEUROTRAUMA, 2018, 35 (19) : 2298 - 2305
  • [28] Machine Learning Approaches to Prognostication in Traumatic Brain Injury
    Neeraj Badjatia
    Jamie Podell
    Ryan B. Felix
    Lujie Karen Chen
    Kenneth Dalton
    Tina I. Wang
    Shiming Yang
    Peter Hu
    Current Neurology and Neuroscience Reports, 2025, 25 (1)
  • [29] Machine Learning Opportunities in Traumatic Brain Injury Patients
    Noor, M. Marzia
    Rahman, Md Moshiur
    Agrawal, Amit
    Moscote-Salazar, Luis Rafael
    INDIAN JOURNAL OF NEUROTRAUMA, 2025,
  • [30] Mild traumatic brain injury
    Gerstenbrand, F
    Stepan, CA
    BRAIN INJURY, 2001, 15 (02) : 95 - 97