Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images

被引:5
|
作者
Liu, Yilin [1 ]
Kirk, Gregory R. [1 ]
Nacewicz, Brendon M. [1 ]
Styner, Martin A. [2 ,4 ]
Shen, Mingren [3 ]
Nie, Dong [4 ]
Adluru, Nagesh [1 ]
Yeske, Benjamin [1 ]
Ferrazzano, Peter A. [1 ]
Alexander, Andrew L. [1 ]
机构
[1] Univ Wisconsin Madison, Waisman Lab Brain Imaging & Behav, Madison, WI 53705 USA
[2] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USA
[3] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI USA
[4] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1007/978-3-030-33391-1_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While learning based methods have brought extremely promising results in medical imaging, a major bottleneck is the lack of generalizability. Medical images are often collected from multiple sites and/or protocols for increasing statistical power, while CNN trained on one site typically cannot be well-transferred to others. Further, expert-defined manual labels for medical images are typically rare, making training a dedicated CNN for each site unpractical, so it is important to make best use of the limited labeled source data. To address this problem, we harmonize the target data using adversarial learning, and propose targeted feature dropout (TFD) to enhance the robustness of the model to variations in target images. Specifically, TFD is guided by attention to stochastically remove some of the most discriminative features. Essentially, this technique combines the benefits of attention mechanism and dropout, while it does not increase parameters and computational costs, making it well-suited for small neuroimaging datasets. We evaluated our method on a challenging Traumatic Brain Injury (TBI) dataset collected from 13 sites, using labeled source data of only 14 healthy subjects. Experimental results confirmed the feasibility of using the Cycle-consistent adversarial network for harmonizing multi-site MR images, and demonstrated that TFD further improved the generalization of the vanilla segmentation model on TBI data, reaching comparable accuracy with that of the supervised learning. The code is available at https://github.com/YilinLiu97/Targeted-Feature-Dropout.git.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 45 条
  • [1] Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization
    Bostami, Biozid
    Espinoza, Flor A.
    van der Horn, Harm J.
    van der Naalt, Joukje
    Calhoun, Vince D.
    Vergara, Victor M.
    2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2022, : 537 - 540
  • [2] Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury
    Remedios, Samuel
    Roy, Snehashis
    Blaber, Justin
    Bermudez, Camilo
    Nath, Vishwesh
    Patel, Mayur B.
    Butman, John A.
    Landman, Bennett A.
    Pham, Dzung L.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [3] Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines
    Tate, David F.
    Dennis, Emily L.
    Adams, John T.
    Adamson, Maheen M.
    Belanger, Heather G.
    Bigler, Erin D.
    Bouchard, Heather C.
    Clark, Alexandra L.
    Delano-Wood, Lisa M.
    Disner, Seth G.
    Eapen, Blessen C.
    Franz, Carol E.
    Geuze, Elbert
    Goodrich-Hunsaker, Naomi J.
    Han, Kihwan
    Hayes, Jasmeet P.
    Hinds, Sidney R., II
    Hodges, Cooper B.
    Hovenden, Elizabeth S.
    Irimia, Andrei
    Kenney, Kimbra
    Koerte, Inga K.
    Kremen, William S.
    Levin, Harvey S.
    Lindsey, Hannah M.
    Morey, Rajendra A.
    Newsome, Mary R.
    Ollinger, John
    Pugh, Mary Jo
    Scheibel, Randall S.
    Shenton, Martha E.
    Sullivan, Danielle R.
    Taylor, Brian A.
    Troyanskaya, Maya
    Velez, Carmen
    Wade, Benjamin S. C.
    Wang, Xin
    Ware, Ashley L.
    Zafonte, Ross
    Thompson, Paul M.
    Wilde, Elisabeth A.
    BRAIN IMAGING AND BEHAVIOR, 2021, 15 (02) : 585 - 613
  • [4] Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines
    David F Tate
    Emily L Dennis
    John T Adams
    Maheen M Adamson
    Heather G Belanger
    Erin D Bigler
    Heather C Bouchard
    Alexandra L Clark
    Lisa M Delano-Wood
    Seth G Disner
    Blessen C Eapen
    Carol E Franz
    Elbert Geuze
    Naomi J Goodrich-Hunsaker
    Kihwan Han
    Jasmeet P Hayes
    Sidney R Hinds
    Cooper B Hodges
    Elizabeth S Hovenden
    Andrei Irimia
    Kimbra Kenney
    Inga K Koerte
    William S Kremen
    Harvey S Levin
    Hannah M Lindsey
    Rajendra A Morey
    Mary R Newsome
    John Ollinger
    Mary Jo Pugh
    Randall S Scheibel
    Martha E Shenton
    Danielle R. Sullivan
    Brian A Taylor
    Maya Troyanskaya
    Carmen Velez
    Benjamin SC Wade
    Xin Wang
    Ashley L Ware
    Ross Zafonte
    Paul M Thompson
    Elisabeth A Wilde
    Brain Imaging and Behavior, 2021, 15 : 585 - 613
  • [5] Correlates of traumatic brain injury among juvenile offenders: A multi-site study
    Vaughn, Michael G.
    Salas-Wright, Christopher P.
    Delisi, Matt
    Perron, Brian
    CRIMINAL BEHAVIOUR AND MENTAL HEALTH, 2014, 24 (03) : 188 - 203
  • [6] Real-time multi-site multi-parametric monitoring of rat brain subjected to traumatic brain injury
    Manor, Tami
    Barbiro-Michaely, Efrat
    Rogatsky, Genady
    Mayevsky, Avraham
    NEUROLOGICAL RESEARCH, 2008, 30 (10) : 1075 - 1083
  • [7] Learning multi-site harmonization of magnetic resonance images without traveling human phantoms
    Siyuan Liu
    Pew-Thian Yap
    Communications Engineering, 3 (1):
  • [8] Predictors of longitudinal depression trajectories after traumatic brain injury in Latin America: A multi-site study
    Cariello, Anna N.
    Perrin, Paul B.
    Rodriguez Agudelo, Yaneth
    Olivera Plaza, Silvia Leonor
    Cristina Quijano-Martinez, Maria
    Trujillo, Michael A.
    Carlos Arango-Lasprilla, Juan
    NEUROREHABILITATION, 2020, 46 (02) : 205 - 212
  • [9] Robust whole-brain segmentation: Application to traumatic brain injury
    Ledig, Christian
    Heckemann, Rolf A.
    Hammers, Alexander
    Lopez, Juan Carlos
    Newcombe, Virginia F. J.
    Makropoulos, Antonios
    Loetjoenen, Jyrki
    Menon, David K.
    Rueckert, Daniel
    MEDICAL IMAGE ANALYSIS, 2015, 21 (01) : 40 - 58
  • [10] A Brain Electrical Activity Electroencephalographic-Based Biomarker of Functional Impairment in Traumatic Brain Injury: A Multi-Site Validation Trial
    Hanley, Daniel
    Prichep, Leslie S.
    Badjatia, Neeraj
    Bazarian, Jeffrey
    Chiacchierini, Richard
    Curley, Kenneth C.
    Garrett, John
    Jones, Elizabeth
    Naunheim, Rosanne
    O'Neil, Brian
    O'Neill, John
    Wright, David W.
    Huff, J. Stephen
    JOURNAL OF NEUROTRAUMA, 2018, 35 (01) : 41 - 47