Generalized Schrödinger-Bopp-Podolsky type system with singular nonlinearity

被引:0
|
作者
Alves, Ricardo Lima [1 ]
机构
[1] Univ Fed Acre UFAC, Ctr Ciencias Exatas & Tecnol, Rio Branco, AC, Brazil
关键词
Critical point theory; Schr & ouml; dinger-Bopp-Podolsky system; Singular nonlinearity; Positive solutions; BOPP-PODOLSKY ELECTRODYNAMICS; MULTIPLE POSITIVE SOLUTIONS; SCHRODINGER-POISSON SYSTEM; EQUATION;
D O I
10.1016/j.jmaa.2024.128499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the existence, non-existence and multiplicity of solutions for a class of generalized Schr & ouml;dinger-Bopp-Podolsky system with singular nonlinearity. The main techniques we use are some results on critical point theory for non-differentiable functionals and the sub-supersolution method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Ground States Solutions for a Modified Fractional Schrödinger Equation with a Generalized Choquard Nonlinearity
    I. Dehsari
    N. Nyamoradi
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 131 - 144
  • [42] Minimal thinness with respect to the Schrödinger operator and its applications on singular Schrödinger-type boundary value problems
    Bo Meng
    Boundary Value Problems, 2019
  • [43] Schrödinger Equations with Stein–Weiss Type Nonlinearity and Potential Vanishing at Infinity
    José Carlos de Albuquerque
    José Luando Santos
    Mediterranean Journal of Mathematics, 2023, 20
  • [44] Variable Supercritical Schrödinger-Poisson system with singular term
    de Araujo, Anderson Luis Albuquerque
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [45] NEHARI TYPE GROUND STATE SOLUTION FOR SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Li, Lin
    Tang, Xianhua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 139 - 152
  • [46] Doubly periodic waves of a discrete nonlinear Schrödinger system with saturable nonlinearity
    Robert Conte
    K W Chow
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 398 - 409
  • [47] Existence and Concentration of Solutions for the Chern–Simons–Schrödinger System with General Nonlinearity
    Xianhua Tang
    Jian Zhang
    Wen Zhang
    Results in Mathematics, 2017, 71 : 643 - 655
  • [48] Generalized noncooperative Schrödinger-Kirchhoff-type systems in RN
    Eddine, Nabil Chems
    Repovs, Dusan D.
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 2092 - 2121
  • [49] Bright soliton dynamics for resonant nonlinear Schr?dinger equation with generalized cubic–quintic nonlinearity
    鲍柯宇
    唐晓刚
    王颖
    Chinese Physics B, 2024, 33 (12) : 323 - 334
  • [50] Analytical and numerical solutions to the generalized Schrödinger equation with fourth-order dispersion and nonlinearity
    Attia, Raghda A. M.
    Alfalqi, Suleman H.
    Alzaidi, Jameel F.
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (14)