Generalized Schrödinger-Bopp-Podolsky type system with singular nonlinearity

被引:0
|
作者
Alves, Ricardo Lima [1 ]
机构
[1] Univ Fed Acre UFAC, Ctr Ciencias Exatas & Tecnol, Rio Branco, AC, Brazil
关键词
Critical point theory; Schr & ouml; dinger-Bopp-Podolsky system; Singular nonlinearity; Positive solutions; BOPP-PODOLSKY ELECTRODYNAMICS; MULTIPLE POSITIVE SOLUTIONS; SCHRODINGER-POISSON SYSTEM; EQUATION;
D O I
10.1016/j.jmaa.2024.128499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the existence, non-existence and multiplicity of solutions for a class of generalized Schr & ouml;dinger-Bopp-Podolsky system with singular nonlinearity. The main techniques we use are some results on critical point theory for non-differentiable functionals and the sub-supersolution method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Nonlinear Schr?dinger equation in the Bopp-Podolsky electrodynamics: Global boundedness, blow-up and no scattering in the energy space
    Gao, Yanfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 64 - 97
  • [32] The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group
    Yu-Cheng An
    Hairong Liu
    Israel Journal of Mathematics, 2020, 235 : 385 - 411
  • [33] Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity
    Arhrrabi, Elhoussain
    El-houari, Hamza
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (03): : 407 - 430
  • [34] A generalized Schrödinger-Debye coupled system
    Nogueira, Marcelo
    Simsen, Jacson
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) : 1217 - 1234
  • [35] A modified Schrödinger-type identity: uniqueness of solutions for singular boundary value problem for the Schrödinger equation
    Hongjun He
    Zhifeng Pang
    Boundary Value Problems, 2019
  • [36] A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies
    Jianduo Yu
    Haifeng Wang
    Chuanzhong Li
    Theoretical and Mathematical Physics, 2023, 215 : 837 - 861
  • [37] Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity
    Zhang, Kun
    Cao, Jiangping
    Lyu, Jingjing
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [38] A generalized nonlinear Schrödinger equation with logarithmic nonlinearity and its Gaussian solitary wave
    Hosseini, K.
    Alizadeh, F.
    Hincal, E.
    Kaymakamzade, B.
    Dehingia, K.
    Osman, M. S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [39] Schrödinger type equations with singular coefficients and lower order terms
    Arias Jr, Alexandre
    Ascanelli, Alessia
    Cappiello, Marco
    Garetto, Claudia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 425 : 190 - 222
  • [40] Fourth-order Schrödinger type operator with singular potentials
    Federica Gregorio
    Sebastian Mildner
    Archiv der Mathematik, 2016, 107 : 285 - 294