Critical Relaxation in the Quantum Yang-Lee Edge Singularity

被引:0
|
作者
Sun, Yue-Mei [1 ,2 ]
Wang, Xinyu [1 ,2 ]
Zhai, Liang-Jun [1 ,2 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Jiangsu Univ Technol, Jiangsu Key Lab Clean Energy Storage & Convers, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
critical relaxation; Yang-Lee edge singularity; parity-time symmetry breaking phase transition; DENSITY; CIRCLE; ZEROS;
D O I
10.3390/e27020170
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relaxation dynamics near the critical points of the Yang-Lee edge singularities (YLESs) in the quantum Ising chain in an imaginary longitudinal field with a polarized initial state. We find that scaling behaviors are manifested in the relaxation process after a non-universal transient time. We show that for the paramagnetic Hamiltonian, the magnetization oscillates periodically with the period being inversely proportional to the gap between the lowest energy level; for the ferromagnetic Hamiltonian, the magnetization decays to a saturated value; while for the critical Hamiltonian, the magnetization increases linearly. A scaling theory is developed to describe these scaling properties. In this theory, we show that for a small- and medium-sized system, the scaling behavior is described by the (0+1)-dimensional YLES.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multicriticality in Yang-Lee edge singularity
    Lencses, Mate
    Miscioscia, Alessio
    Mussardo, Giuseppe
    Takacs, Gabor
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [2] YANG-LEE SINGULARITY AND THE MOBILITY EDGE
    KAPITULNIK, A
    SHAPIR, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (07): : L243 - L248
  • [3] YANG-LEE EDGE SINGULARITY ON FRACTALS
    KNEZEVIC, M
    SOUTHERN, BW
    PHYSICAL REVIEW B, 1986, 34 (07): : 4966 - 4968
  • [4] Multicriticality in Yang-Lee edge singularity
    Máté Lencsés
    Alessio Miscioscia
    Giuseppe Mussardo
    Gábor Takács
    Journal of High Energy Physics, 2023
  • [5] CRITICAL EXPONENTS FOR THE PERCOLATION PROBLEM AND THE YANG-LEE EDGE SINGULARITY
    BONFIM, OFDA
    KIRKHAM, JE
    MCKANE, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (09): : 2391 - 2413
  • [6] Density of Yang-Lee zeros and Yang-Lee edge singularity for the antiferromagnetic Ising model
    Kim, SY
    NUCLEAR PHYSICS B, 2005, 705 (03) : 504 - 520
  • [7] YANG-LEE EDGE SINGULARITY IN SPHERICAL MODELS
    KURTZE, DA
    FISHER, ME
    JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (03) : 205 - 218
  • [8] YANG-LEE EDGE SINGULARITY IN THE HIERARCHICAL MODEL
    BAKER, GA
    FISHER, ME
    MOUSSA, P
    PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 615 - 618
  • [9] STRUCTURE CONSTANT OF THE YANG-LEE EDGE SINGULARITY
    Wydro, Tomasz
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (27): : 4793 - 4797
  • [10] Structure Constant of the Yang-Lee Edge Singularity
    McCabe, J. F.
    Wydro, T.
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2008, 104