Critical Relaxation in the Quantum Yang-Lee Edge Singularity

被引:0
|
作者
Sun, Yue-Mei [1 ,2 ]
Wang, Xinyu [1 ,2 ]
Zhai, Liang-Jun [1 ,2 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Jiangsu Univ Technol, Jiangsu Key Lab Clean Energy Storage & Convers, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
critical relaxation; Yang-Lee edge singularity; parity-time symmetry breaking phase transition; DENSITY; CIRCLE; ZEROS;
D O I
10.3390/e27020170
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relaxation dynamics near the critical points of the Yang-Lee edge singularities (YLESs) in the quantum Ising chain in an imaginary longitudinal field with a polarized initial state. We find that scaling behaviors are manifested in the relaxation process after a non-universal transient time. We show that for the paramagnetic Hamiltonian, the magnetization oscillates periodically with the period being inversely proportional to the gap between the lowest energy level; for the ferromagnetic Hamiltonian, the magnetization decays to a saturated value; while for the critical Hamiltonian, the magnetization increases linearly. A scaling theory is developed to describe these scaling properties. In this theory, we show that for a small- and medium-sized system, the scaling behavior is described by the (0+1)-dimensional YLES.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Yang-Lee edge singularity for Ising model on nonhomogeneous structures
    Knezevic, Milan
    Joksimovic, Jelena
    Knezevic, Dragica
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 : 207 - 214
  • [22] Functional renormalization group approach to the Yang-Lee edge singularity
    X. An
    D. Mesterházy
    M. A. Stephanov
    Journal of High Energy Physics, 2016
  • [23] Unusual Singularity for an Ising Model Near the Yang-Lee Edge
    Knezevic, Dragica
    WOMEN IN PHYSICS, 2013, 1517 : 192 - 192
  • [24] THE YANG-LEE EDGE SINGULARITY BY THE PHENOMENOLOGICAL RENORMALIZATION-GROUP
    UZELAC, K
    JULLIEN, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05): : L151 - L155
  • [25] Kibble-Zurek Scaling in the Yang-Lee Edge Singularity
    Yin, Shuai
    Huang, Guang-Yao
    Lo, Chung-Yu
    Chen, Pochung
    PHYSICAL REVIEW LETTERS, 2017, 118 (06)
  • [26] Yang-Lee edge singularity on a class of tree-like lattices
    Knezevic, M
    ElezovicHadzic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 2103 - 2107
  • [27] Universal Location of the Yang-Lee Edge Singularity in O(N) Theories
    Connelly, Andrew
    Johnson, Gregory
    Rennecke, Fabian
    Skokov, Vladimir V.
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [28] BOND PERCOLATION AND THE YANG-LEE EDGE SINGULARITY PROBLEMS IN 3 DIMENSIONS
    REEVE, JS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09): : L521 - L524
  • [29] COMMENTS ON THE FIELD-THEORETIC FORMULATION OF THE YANG-LEE EDGE SINGULARITY
    KIRKHAM, JE
    WALLACE, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (02): : L47 - L51
  • [30] Critical lines of the Yang-Lee edge singularity of Ising ferromagnets on square, triangular, and honeycomb lattices
    Wang, XZ
    Kim, JS
    PHYSICAL REVIEW E, 1998, 57 (05): : 5013 - 5018