Local modification and analysis of a variable-order fractional wave equation

被引:0
|
作者
Li, Shuyu [1 ]
Wang, Hong [2 ]
Jia, Jinhong [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Variable-order; Fractional wave equation; Well-posedness;
D O I
10.1016/j.aml.2024.109425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a local modification of a variable-order time-fractional wave equation, which models the vibrations of a viscoelastic bar along its longitudinal axis. Under suitable assumptions regarding the variable order at t = 0 , we prove that the original model is equivalent to a multiscale wave equation. Furthermore, we analyze the well-posedness of its weak solution. Numerical experiments are implemented to clarify the theoretical analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [2] Wellposedness and regularity of a nonlinear variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 29 - 35
  • [3] Numerical studies for the variable-order nonlinear fractional wave equation
    N. H. Sweilam
    M. M. Khader
    H. M. Almarwm
    Fractional Calculus and Applied Analysis, 2012, 15 : 669 - 683
  • [4] Numerical studies for the variable-order nonlinear fractional wave equation
    Sweilam, N. H.
    Khader, M. M.
    Almarwm, H. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 669 - 683
  • [5] Analysis of a nonlinear variable-order fractional stochastic differential equation
    Zheng, Xiangcheng
    Zhang, Zhongqiang
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)
  • [6] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [7] Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation
    Zheng, Xiangcheng
    Li, Yiqun
    Cheng, Jin
    Wang, Hong
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (02): : 219 - 231
  • [8] Global well-posedness of the variable-order fractional wave equation with variable exponent nonlinearity
    Lin, Qiang
    Xu, Runzhang
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [9] On the Variable-order Fractional Laplacian Equation with Variable Growth on RN
    Nguyen Van Thin
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (06): : 1187 - 1223
  • [10] Analysis and numerical solution of a nonlinear variable-order fractional differential equation
    Hong Wang
    Xiangcheng Zheng
    Advances in Computational Mathematics, 2019, 45 : 2647 - 2675