Local modification and analysis of a variable-order fractional wave equation

被引:0
|
作者
Li, Shuyu [1 ]
Wang, Hong [2 ]
Jia, Jinhong [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Variable-order; Fractional wave equation; Well-posedness;
D O I
10.1016/j.aml.2024.109425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a local modification of a variable-order time-fractional wave equation, which models the vibrations of a viscoelastic bar along its longitudinal axis. Under suitable assumptions regarding the variable order at t = 0 , we prove that the original model is equivalent to a multiscale wave equation. Furthermore, we analyze the well-posedness of its weak solution. Numerical experiments are implemented to clarify the theoretical analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Legendre wavelets optimization method for variable-order fractional Poisson equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 180 - 190
  • [22] Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media
    Alimbekova, Nurlana
    Bakishev, Aibek
    Berdyshev, Abdumauvlen
    FRACTAL AND FRACTIONAL, 2024, 8 (11)
  • [23] Numerical algorithm for the variable-order Caputo fractional functional differential equation
    Bhrawy, A. H.
    Zaky, M. A.
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1815 - 1823
  • [24] Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay
    Telli, Benoumran
    Souid, Mohammed Said
    Alzabut, Jehad
    Khan, Hasib
    AXIOMS, 2023, 12 (04)
  • [25] Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation
    Wei, Leilei
    Wang, Huanhuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 685 - 698
  • [26] An operational matrix method for solving variable-order fractional biharmonic equation
    M. H. Heydari
    Z. Avazzadeh
    Computational and Applied Mathematics, 2018, 37 : 4397 - 4411
  • [27] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [28] An operational matrix method for solving variable-order fractional biharmonic equation
    Heydari, M. H.
    Avazzadeh, Z.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4397 - 4411
  • [29] Numerical algorithm for the variable-order Caputo fractional functional differential equation
    A. H. Bhrawy
    M. A. Zaky
    Nonlinear Dynamics, 2016, 85 : 1815 - 1823
  • [30] Optimal order finite difference local discontinuous Galerkin method for variable-order time-fractional diffusion equation
    Wei, Leilei
    Yang, Yanfang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383