Rapid traversal of vast chemical space using machine learning-guided docking screens

被引:0
|
作者
Luttens, Andreas [1 ,2 ,3 ]
de Vaca, Israel Cabeza [1 ]
Sparring, Leonard [1 ]
Brea, Jose [4 ,5 ]
Martinez, Anton Leandro [4 ,5 ]
Kahlous, Nour Aldin [1 ]
Radchenko, Dmytro S. [6 ]
Moroz, Yurii S. [6 ,7 ,8 ]
Loza, Maria Isabel [4 ,5 ]
Norinder, Ulf [9 ]
Carlsson, Jens [1 ]
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, BMC, Uppsala, Sweden
[2] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[3] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[4] Univ Santiago de Compostela, Dept Pharmacol Pharm & Pharmaceut Technol, BioFarma Res Grp, Ctr Res Mol Med & Chron Dis CiMUS,Innopharma Drug, Santiago De Compostela, Spain
[5] Hlth Res Inst Santiago De Compostela, Santiago De Compostela, Spain
[6] Enamine Ltd, Kyiv, Ukraine
[7] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[8] Chemspace LLC, Kyiv, Ukraine
[9] Uppsala Univ, Dept Pharmaceut Biosci, Uppsala, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
DISCOVERY; LIGANDS; DESIGN;
D O I
10.1038/s43588-025-00777-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accelerating growth of make-on-demand chemical libraries provides unprecedented opportunities to identify starting points for drug discovery with virtual screening. However, these multi-billion-scale libraries are challenging to screen, even for the fastest structure-based docking methods. Here we explore a strategy that combines machine learning and molecular docking to enable rapid virtual screening of databases containing billions of compounds. In our workflow, a classification algorithm is trained to identify top-scoring compounds based on molecular docking of 1 million compounds to the target protein. The conformal prediction framework is then used to make selections from the multi-billion-scale library, reducing the number of compounds to be scored by docking. The CatBoost classifier showed an optimal balance between speed and accuracy and was used to adapt the workflow for screens of ultralarge libraries. Application to a library of 3.5 billion compounds demonstrated that our protocol can reduce the computational cost of structure-based virtual screening by more than 1,000-fold. Experimental testing of predictions identified ligands of G protein-coupled receptors and demonstrated that our approach enables discovery of compounds with multi-target activity tailored for therapeutic effect.
引用
收藏
页码:301 / 312
页数:15
相关论文
共 50 条
  • [31] Machine learning-guided prediction and optimization of precipitation efficiency in the Bayer process
    Abbas Bakhtom
    Saeed Ghasemzade Bariki
    Salman Movahedirad
    Mohammad Amin Sobati
    Chemical Papers, 2023, 77 : 2509 - 2524
  • [32] Enhancing Abstract Argumentation Solvers with Machine Learning-Guided Heuristics: A Feasibility Study
    Hoffmann, Sandra
    Kuhlmann, Isabelle
    Thimm, Matthias
    ROBUST ARGUMENTATION MACHINES, RATIO 2024, 2024, 14638 : 185 - 201
  • [33] AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides
    Van Oort, Colin M.
    Ferrell, Jonathon B.
    Remington, Jacob M.
    Wshah, Safwan
    Li, Jianing
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) : 2198 - 2207
  • [34] Machine Learning-Guided Performance Evaluation of an All-Liquid Electrochromic Device
    Lai, Huayi
    Cai, Qingyue
    Li, Muyun
    Kong, Sifan
    Wu, Yitong
    Yang, Huan
    Zhang, Yong
    Ning, Honglong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28798 - 28807
  • [35] Machine learning-guided prediction of potential engineering targets for microbial production of lycopene
    Kang, Chang Keun
    Shin, Jihoon
    Cha, YoonKyung
    Kim, Min Sun
    Choi, Min Sun
    Kim, TaeHo
    Park, Young -Kwon
    Choi, Yong Jun
    BIORESOURCE TECHNOLOGY, 2023, 369
  • [36] Machine Learning-Guided Systematic Search of DNA Sequences for Sorting Carbon Nanotubes
    Lin, Zhiwei
    Yang, Yoona
    Jagota, Anand
    Zheng, Ming
    ACS NANO, 2022, 16 (03) : 4705 - 4713
  • [37] Machine Learning-Guided Design of Pearlitic Steel with Promising Mechanical and Tribological Properties
    Qiao, Ling
    Zhu, Jingchuan
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (12)
  • [38] Evaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems
    Aminorroaya, Arya
    Dhingra, Lovedeep S.
    Oikonomou, Evangelos K.
    Khera, Rohan
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2025, 18 (01):
  • [39] Benchmarking protein structure predictors to assist machine learning-guided peptide discovery
    Aldas-Bulos, Victor Daniel
    Plisson, Fabien
    DIGITAL DISCOVERY, 2023, 2 (04): : 981 - 993
  • [40] Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries
    Kai Li
    Jifeng Wang
    Yuanyuan Song
    Ying Wang
    Nature Communications, 14