Rapid traversal of vast chemical space using machine learning-guided docking screens

被引:0
|
作者
Luttens, Andreas [1 ,2 ,3 ]
de Vaca, Israel Cabeza [1 ]
Sparring, Leonard [1 ]
Brea, Jose [4 ,5 ]
Martinez, Anton Leandro [4 ,5 ]
Kahlous, Nour Aldin [1 ]
Radchenko, Dmytro S. [6 ]
Moroz, Yurii S. [6 ,7 ,8 ]
Loza, Maria Isabel [4 ,5 ]
Norinder, Ulf [9 ]
Carlsson, Jens [1 ]
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, BMC, Uppsala, Sweden
[2] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[3] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[4] Univ Santiago de Compostela, Dept Pharmacol Pharm & Pharmaceut Technol, BioFarma Res Grp, Ctr Res Mol Med & Chron Dis CiMUS,Innopharma Drug, Santiago De Compostela, Spain
[5] Hlth Res Inst Santiago De Compostela, Santiago De Compostela, Spain
[6] Enamine Ltd, Kyiv, Ukraine
[7] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[8] Chemspace LLC, Kyiv, Ukraine
[9] Uppsala Univ, Dept Pharmaceut Biosci, Uppsala, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
DISCOVERY; LIGANDS; DESIGN;
D O I
10.1038/s43588-025-00777-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accelerating growth of make-on-demand chemical libraries provides unprecedented opportunities to identify starting points for drug discovery with virtual screening. However, these multi-billion-scale libraries are challenging to screen, even for the fastest structure-based docking methods. Here we explore a strategy that combines machine learning and molecular docking to enable rapid virtual screening of databases containing billions of compounds. In our workflow, a classification algorithm is trained to identify top-scoring compounds based on molecular docking of 1 million compounds to the target protein. The conformal prediction framework is then used to make selections from the multi-billion-scale library, reducing the number of compounds to be scored by docking. The CatBoost classifier showed an optimal balance between speed and accuracy and was used to adapt the workflow for screens of ultralarge libraries. Application to a library of 3.5 billion compounds demonstrated that our protocol can reduce the computational cost of structure-based virtual screening by more than 1,000-fold. Experimental testing of predictions identified ligands of G protein-coupled receptors and demonstrated that our approach enables discovery of compounds with multi-target activity tailored for therapeutic effect.
引用
收藏
页码:301 / 312
页数:15
相关论文
共 50 条
  • [21] De novo spatial proteomic profiling of immune synapses using machine learning-guided microscoop
    Liu, You-Pi
    Chong, Weng Man
    Huang, Harry
    Chen, Yi-De
    Chung, Chia-Wen
    Chang, Hsiao-Jen
    Chang, Chih-Wei
    Liao, Jung-Chi
    CANCER RESEARCH, 2022, 82 (12)
  • [22] Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation
    Ahmadi, Soroush
    Ghanavati, Mohammad Amin
    Rohani, Sohrab
    CHEMISTRY OF MATERIALS, 2024, 36 (03) : 1153 - 1161
  • [23] Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
    Claire N. Bedbrook
    Kevin K. Yang
    J. Elliott Robinson
    Elisha D. Mackey
    Viviana Gradinaru
    Frances H. Arnold
    Nature Methods, 2019, 16 : 1176 - 1184
  • [24] Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
    Bedbrook, Claire N.
    Yang, Kevin K.
    Robinson, J. Elliott
    Mackey, Elisha D.
    Gradinaru, Viviana
    Arnold, Frances H.
    NATURE METHODS, 2019, 16 (11) : 1176 - +
  • [25] De novo spatial proteomic profiling of immune synapses using a machine learning-guided microscope
    Liu, Y.
    Chong, W.
    Huang, C.
    Lin, Y.
    Chen, Y.
    Cheung, C.
    Chang, H.
    Chung, C.
    Chang, C.
    Liao, J.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 23 - 23
  • [26] Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts
    Li, Sirui
    Zhang, Hanguang
    Holby, Edward F.
    Zelenay, Piotr
    Kort-Kamp, Wilton J. M.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 48
  • [27] Machine learning-guided engineering of genetically encoded fluorescent calcium indicators
    Wait, Sarah J.
    Exposit, Marc
    Lin, Sophia
    Rappleye, Michael
    Lee, Justin Daho
    Colby, Samuel A.
    Torp, Lily
    Asencio, Anthony
    Smith, Annette
    Regnier, Michael
    Moussavi-Harami, Farid
    Baker, David
    Kim, Christina K.
    Berndt, Andre
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (03): : 224 - 236
  • [28] Machine learning-guided prediction and optimization of precipitation efficiency in the Bayer process
    Bakhtom, Abbas
    Bariki, Saeed Ghasemzade
    Movahedirad, Salman
    Sobati, Mohammad Amin
    CHEMICAL PAPERS, 2023, 77 (05) : 2509 - 2524
  • [29] Machine Learning-Guided Discovery of AcrB and MexB Efflux Pump Inhibitors
    Bera, Abhishek
    Roy, Rakesh Kumar
    Joshi, Pritish
    Patra, Niladri
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (03): : 648 - 663
  • [30] Machine learning-guided discovery and design of non-hemolytic peptides
    Fabien Plisson
    Obed Ramírez-Sánchez
    Cristina Martínez-Hernández
    Scientific Reports, 10