Rapid traversal of vast chemical space using machine learning-guided docking screens

被引:0
|
作者
Luttens, Andreas [1 ,2 ,3 ]
de Vaca, Israel Cabeza [1 ]
Sparring, Leonard [1 ]
Brea, Jose [4 ,5 ]
Martinez, Anton Leandro [4 ,5 ]
Kahlous, Nour Aldin [1 ]
Radchenko, Dmytro S. [6 ]
Moroz, Yurii S. [6 ,7 ,8 ]
Loza, Maria Isabel [4 ,5 ]
Norinder, Ulf [9 ]
Carlsson, Jens [1 ]
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, BMC, Uppsala, Sweden
[2] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[3] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[4] Univ Santiago de Compostela, Dept Pharmacol Pharm & Pharmaceut Technol, BioFarma Res Grp, Ctr Res Mol Med & Chron Dis CiMUS,Innopharma Drug, Santiago De Compostela, Spain
[5] Hlth Res Inst Santiago De Compostela, Santiago De Compostela, Spain
[6] Enamine Ltd, Kyiv, Ukraine
[7] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[8] Chemspace LLC, Kyiv, Ukraine
[9] Uppsala Univ, Dept Pharmaceut Biosci, Uppsala, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
DISCOVERY; LIGANDS; DESIGN;
D O I
10.1038/s43588-025-00777-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accelerating growth of make-on-demand chemical libraries provides unprecedented opportunities to identify starting points for drug discovery with virtual screening. However, these multi-billion-scale libraries are challenging to screen, even for the fastest structure-based docking methods. Here we explore a strategy that combines machine learning and molecular docking to enable rapid virtual screening of databases containing billions of compounds. In our workflow, a classification algorithm is trained to identify top-scoring compounds based on molecular docking of 1 million compounds to the target protein. The conformal prediction framework is then used to make selections from the multi-billion-scale library, reducing the number of compounds to be scored by docking. The CatBoost classifier showed an optimal balance between speed and accuracy and was used to adapt the workflow for screens of ultralarge libraries. Application to a library of 3.5 billion compounds demonstrated that our protocol can reduce the computational cost of structure-based virtual screening by more than 1,000-fold. Experimental testing of predictions identified ligands of G protein-coupled receptors and demonstrated that our approach enables discovery of compounds with multi-target activity tailored for therapeutic effect.
引用
收藏
页码:301 / 312
页数:15
相关论文
共 50 条
  • [1] Machine Learning-Guided Prediction of Hydroformylation
    Shi, Haonan
    Shen, Chaoren
    Huang, Zheng
    Dong, Kaiwu
    CHEMPHYSCHEM, 2025, 26 (03)
  • [2] Machine Learning-Guided Protein Engineering
    Kouba, Petr
    Kohout, Pavel
    Haddadi, Faraneh
    Bushuiev, Anton
    Samusevich, Raman
    Sedlar, Jiri
    Damborsky, Jiri
    Pluskal, Tomas
    Sivic, Josef
    Mazurenko, Stanislav
    ACS CATALYSIS, 2023, 13 (21) : 13863 - 13895
  • [3] Machine Learning-Guided Etch Proximity Correction
    Shim, Seongbo
    Shin, Youngsoo
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2017, 30 (01) : 1 - 7
  • [4] Nucleotide augmentation for machine learning-guided protein engineering
    Minot, Mason
    Reddy, Sai T.
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [5] Machine learning-guided synthesis of advanced inorganic materials
    Tang, Bijun
    Lu, Yuhao
    Zhou, Jiadong
    Chouhan, Tushar
    Wang, Han
    Golani, Prafful
    Xu, Manzhang
    Xu, Quan
    Guan, Cuntai
    Liu, Zheng
    MATERIALS TODAY, 2020, 41 : 72 - 80
  • [6] Machine Learning-Guided Exploration of Ternary Metal Borohydrides
    Cheng, Rong
    Xue, Xuyan
    Wang, C. Z.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (18): : 7742 - 7749
  • [7] Machine learning-guided high throughput nanoparticle design
    Ortiz-Perez, Ana
    van Tilborg, Derek
    van der Meel, Roy
    Grisoni, Francesca
    Albertazzi, Lorenzo
    DIGITAL DISCOVERY, 2024, 3 (07): : 1280 - 1291
  • [8] Machine learning-guided peptide discovery: are we there yet?
    Mausa, Goran
    Kalafatovic, Daniela
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [9] A review on machine learning-guided design of energy materials
    Kim, Seongmin
    Xu, Jiaxin
    Shang, Wenjie
    Xu, Zhihao
    Lee, Eungkyu
    Luo, Tengfei
    PROGRESS IN ENERGY, 2024, 6 (04):
  • [10] Machine Learning-Guided Approach for Studying Solvation Environments
    Basdogan, Yasemin
    Groenenboom, Mitchell C.
    Henderson, Ethan
    De, Sandip
    Rempe, Susan B.
    Keith, John A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (01) : 633 - 642