The total vertex irregularity strength for cubic graphs with a perfect matching

被引:0
|
作者
Barra, Aleams [1 ]
Afifurrahman, Muhammad [2 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Algebra Res Grp, Jalan Ganesha 10, Bandung 40132, West Java, Indonesia
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Cubic graph; Total vertex irregularity strength; Graph labeling;
D O I
10.1016/j.disc.2025.114402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the exact value of the total vertex irregularity strength of a cubic graph G with a perfect matching. In particular, we confirm that the conjectured value of the total vertex irregularity strength holds. Our method uses a {1, s}-edge labeling on the graph G, which can be extended to a vertex irregular labeling on G. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On total irregularity strength of caterpillar graphs with two leaves on each internal vertex
    Rosyida, I.
    Widodo
    Indriati, D.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [22] On the total vertex irregularity strength of firecracker graph
    Haryanti, A.
    Indriati, D.
    Martini, T. S.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [23] On total vertex irregularity strength of generalized uniform cactus chain graphs with pendant vertices
    Rosyida, Isnaini
    Mulyono
    Indriati, Diari
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (06): : 1369 - 1380
  • [24] The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges
    Indriati, Diari
    Widodo
    Wijayanti, Indah E.
    Sugeng, Kiki A.
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 14 - 26
  • [25] Total vertex irregularity strength of certain equitable complete m-partite graphs
    Guo, Jing
    Chen, Xiang'en
    Wang, Zhiwen
    Yao, Bing
    ARS COMBINATORIA, 2015, 123 : 407 - 418
  • [26] On The Total Irregularity Strength of Regular Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2015, 47 (03) : 281 - 295
  • [27] On the parameterized vertex cover problem for graphs with perfect matching
    WANG JianXin
    LI WenJun
    LI ShaoHua
    CHEN JianEr
    Science China(Information Sciences), 2014, 57 (07) : 105 - 116
  • [28] On the parameterized vertex cover problem for graphs with perfect matching
    JianXin Wang
    WenJun Li
    ShaoHua Li
    JianEr Chen
    Science China Information Sciences, 2014, 57 : 1 - 12
  • [29] On total vertex irregularity strength of honeycomb derived networks
    Annamma, V.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 159 - 165
  • [30] On approximating minimum vertex cover for graphs with perfect matching
    Chen, JN
    Kanj, IA
    THEORETICAL COMPUTER SCIENCE, 2005, 337 (1-3) : 305 - 318