Torsional-via-Assisted Nanoelectromechanical Memory Switches

被引:0
|
作者
Lee, Jin Wook [1 ,2 ]
Park, Geun Tae [1 ,2 ]
Shin, Myeong Su [1 ,2 ]
Choi, Woo Young [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Seoul 08826, South Korea
关键词
Torsional via anchor; nanoelectromechanical (NEM) memory switch; monolithic three-dimensional (M3D); reliability; endurance;
D O I
10.1109/LED.2024.3483752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monolithic three-dimensional integrated CMOS-nanoelectromechanical (NEM) circuits are gaining traction owing to their high chip density and low power consumption. However, the low endurance of NEM memory switches presents a reliability challenge. In this study, a novel torsional-via-assisted NEM memory switch design is proposed and experimentally demonstrated. The design incorporates vertically connected via anchors to allow torsion, which alleviates the maximum stress on the beam by similar to 46 % compared to the conventional in-plane design. The measurement data confirm endurance improvement, which sets a new benchmark for nonvolatile NEM memory switches with an endurance cycle exceeding 4,000 times. Furthermore, it was experimentally discussed that the electrode-gap narrowing induced by repeated switching cycles allows for a lower average operation voltage.
引用
收藏
页码:2573 / 2576
页数:4
相关论文
共 50 条
  • [21] Modeling Nanoelectromechanical Switches With Random Surface Roughness
    Connelly, Daniel
    Liu, Tsu-Jae King
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (05) : 2409 - 2416
  • [22] Logic gates based on electrically driven nanoelectromechanical switches
    Nguyen Van Toan
    Zhao, Dong
    Inomata, Naoki
    Ono, Takahito
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2019, 14 (02) : 335 - 336
  • [23] Nanoelectromechanical Logic and Memory Devices
    Akarvardar, Kerem
    Wong, H. -S. Philip
    ADVANCED GATE STACK, SOURCE/DRAIN, AND CHANNEL ENGINEERING FOR SI-BASED CMOS 5: NEW MATERIALS, PROCESSES, AND EQUIPMENT, 2009, 19 (01): : 49 - 59
  • [24] Simulation of carbon nanotube-based nanoelectromechanical switches
    Dequesnes, Marc
    Rotkin, S. V.
    Aluru, N. R.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 383 - 386
  • [25] Low pull-in voltage graphene nanoelectromechanical switches
    Manoharan, M.
    Chikuba, T.
    Kanetake, N.
    Sun, J.
    Mizuta, H.
    2015 SILICON NANOELECTRONICS WORKSHOP (SNW), 2015,
  • [26] Compensation of nonlinear hardening effect in a nanoelectromechanical torsional resonator
    Laurent, L.
    Yon, J. J.
    Moulet, J. S.
    Imperinetti, P.
    Duraffourg, L.
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 263 : 326 - 331
  • [27] Carbon-Carbon Contacts for Robust Nanoelectromechanical Switches
    Loh, Owen
    Wei, Xiaoding
    Sullivan, John
    Ocola, Leonidas E.
    Divan, Ralu
    Espinosa, Horacio D.
    ADVANCED MATERIALS, 2012, 24 (18) : 2463 - 2468
  • [28] Nanoelectromechanical systems as single electron switches and field emitters
    Kim, Hyun S.
    Qin, Hua
    Blick, Robert H.
    MEMS/MOEMS COMPONENTS AND THEIR APPLICATIONS IV, 2007, 6464
  • [29] Nanoelectromechanical Switches for Low-Power Digital Computing
    Peschot, Alexis
    Qian, Chuang
    Liu, Tsu-Jae King
    MICROMACHINES, 2015, 6 (08): : 1046 - 1065
  • [30] The Shuttle Nanoelectromechanical Nonvolatile Memory
    Pott, Vincent
    Chua, Geng Li
    Vaddi, Ramesh
    Tsai, Julius Ming-Lin
    Kim, Tony T.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (04) : 1137 - 1143