Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons

被引:0
|
作者
Nagaraja, H. G. [1 ]
Pavithra, R. C. [1 ]
Sangeetha, M. [1 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, Karnataka, India
来源
关键词
*- eta-Ricci-Yamabe soliton; gradient almost *- eta-Ricci-Yamabe soliton;
D O I
10.32513/asetmj/1932200824047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the domain of Riemannian Geometry, we explore *-rj-Ricci-Yamabe soliton on a Riemannian manifold (G3, g). Initially, we establish that if the metric g of G3 constitutes a *-rj-RicciYamabe soliton, then G3 is necessarily Einstein, when the soliton vector field V is contact. Additionally, we investigated that the Riemannian manifold (G3, g), accommodates a gradient almost *-rj-Ricci-Yamabe soliton, concluding that it must be Einstein with a consistent scalar curvature r =-6. The associated functions of the *-rj-Ricci soliton are characterized by alpha = 1 and beta= 0.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [1] Riemannian 3-manifolds and Ricci-Yamabe solitons
    Haseeb, Abdul
    Chaubey, Sudhakar K.
    Khan, Meraj Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (01)
  • [2] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [3] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [4] ?-Ricci-Yamabe Solitons along Riemannian Submersions
    Siddiqi, Mohd Danish
    Mofarreh, Fatemah
    Akyol, Mehmet Akif
    Hakami, Ali H.
    Perez, Juan De Dios
    AXIOMS, 2023, 12 (08)
  • [5] Ricci-Yamabe solitons on (κ, μ)-almost coKahler manifolds
    Mandal, Tarak
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [6] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [7] Sasakian Manifolds Admitting *-η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Prasad, Rajendra
    Mofarreh, Fatemah
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [8] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [9] Conformal Ricci-Yamabe solitons on warped product manifolds
    Singh, Jay Prakash
    Sumlalsanga, Robert
    FILOMAT, 2024, 38 (11) : 3791 - 3802
  • [10] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)