Electrical Impedance Spectroscopy Based Preterm Birth Prediction with Machine Learning

被引:0
|
作者
Wang, Mengxiao [1 ]
Lang, Zi-Qiang [1 ]
Zhang, Di [1 ]
Anumba, D. O. C. [2 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Acad Unit Reprod & Dev Med, Dept Oncol & Metab, Sheffield, S Yorkshire, England
关键词
Preterm birth; Machine learning; Data balancing; Electrical impedance spectroscopy;
D O I
10.1007/978-3-031-67278-1_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preterm birth (PTB) is a critical global health concern as it stands as the leading cause of neonatal mortality. The objective of this research is to construct Machine Learning (ML) models functioning as a decision support system, intended to predict the likelihood of preterm delivery among pregnant women at high risk. We applied different rebalancing optimization methods to an extremely imbalanced electrical impedance spectroscopy (EIS) data set. Our EIS data set consisted of 365 records, and 12% ( n = 43) of records were preterm birth. We employed four classical machine learning classifiers, namely Logistic Regression, Random Forest, MultiLayer Perceptron, and Support Vector Machine, along with two distinct data rebalancing approaches: synthetic minority oversampling technique (SMOTE) and weighed balancing method. Our primary means of assessing model efficiency were sensitivity and AUC. Our findings indicated that SMOTE significantly enhanced the prediction performance of the PTB group, MLP attained the best sensitivity score of 0.89.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条
  • [41] Electrical Impedance Spectroscopy Predicts Preterm Delivery in Asymptomatic Women.
    Stern, Victoria
    Healey, Timothy J.
    Lang, Zi-Qiang
    Brown, Brian H.
    Anumba, Dilly O.
    REPRODUCTIVE SCIENCES, 2018, 25 : 63A - 63A
  • [42] Machine Learning-Based Adaptive Moment Gradient for Electrical Impedance Tomography
    Idaamar, Soumaya
    Louzar, Mohamed
    Lamnii, Abdellah
    Rhila, Soukaina Ben
    IAENG International Journal of Computer Science, 2024, 51 (06) : 688 - 693
  • [43] Microbiome preterm birth DREAM challenge Crowdsourcing machine learning approaches to advance preterm birth research
    Golob, Jonathan L.
    Oskotsky, Tomiko T.
    Tang, Alice S.
    Roldan, Alennie
    Chung, Verena
    Ha, Connie W. Y.
    Wong, Ronald J.
    Flynn, Kaitlin J.
    Parraga-Leo, Antonio
    Wibrand, Camilla
    Minot, Samuel S.
    Oskotsky, Boris
    Andreoletti, Gaia
    Kosti, Idit
    Bletz, Julie
    Nelson, Amber
    Gao, Jifan
    Wei, Zhoujingpeng
    Chen, Guanhua
    Tang, Zheng-Zheng
    Novielli, Pierfrancesco
    Romano, Donato
    Pantaleo, Ester
    Amoroso, Nicola
    Monaco, Alfonso
    Vacca, Mirco
    De Angelis, Maria
    Bellotti, Roberto
    Tangaro, Sabina
    Kuntzleman, Abigail
    Bigcraft, Isaac
    Techtmann, Stephen
    Bae, Daehun
    Kim, Eunyoung
    Jeon, Jongbum
    Joe, Soobok
    Theis, Kevin R.
    Ng, Sherriann
    Lee, Yun S.
    Diaz-Gimeno, Patricia
    Bennett, Phillip R.
    MacIntyre, David A.
    Stolovitzky, Gustavo
    Lynch, Susan V.
    Albrecht, Jake
    Gomez-Lopez, Nardhy
    Romero, Roberto
    Stevenson, David K.
    Aghaeepour, Nima
    Tarca, Adi L.
    CELL REPORTS MEDICINE, 2024, 5 (01)
  • [44] Prediction of fuel cell performance degradation using a combined approach of machine learning and impedance spectroscopy
    Lyu, Zewei
    Wang, Yige
    Sciazko, Anna
    Li, Hangyue
    Komatsu, Yosuke
    Sun, Zaihong
    Sun, Kaihua
    Shikazono, Naoki
    Han, Minfang
    JOURNAL OF ENERGY CHEMISTRY, 2023, 87 : 32 - 41
  • [45] Prediction of fuel cell performance degradation using a combined approach of machine learning and impedance spectroscopy
    Zewei Lyu
    Yige Wang
    Anna Sciazko
    Hangyue Li
    Yosuke Komatsu
    Zaihong Sun
    Kaihua Sun
    Naoki Shikazono
    Minfang Han
    Journal of Energy Chemistry , 2023, (12) : 32 - 41
  • [46] A Machine Learning Algorithm using Clinical and Demographic Data for All-Cause Preterm Birth Prediction
    Bitar, Ghamar
    Liu, Wei
    Tunguhan, Jade
    Kumar, Kaveeta V.
    Hoffman, Matthew K.
    AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 : e3115 - e3123
  • [47] Prediction of Glucose Sensor Sensitivity in the Presence of Biofouling Using Machine Learning and Electrochemical Impedance Spectroscopy
    Sharma, Hrishita
    Kalita, Deepjyoti
    Naskar, Ujjal
    Mishra, Bikash Kumar
    Kumar, Prasoon
    Mirza, Khalid Baig
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18785 - 18797
  • [48] ELECTRICAL IMPEDANCE TOMOGRAPHY, ENCLOSURE METHOD AND MACHINE LEARNING
    Siltanen, Samuli
    Ide, Takanori
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [49] PREDICTION OF PRETERM BIRTH
    MORTENSEN, OA
    FRANKLIN, J
    LOFSTRAND, T
    SVANBERG, B
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 1987, 66 (06) : 507 - 512
  • [50] Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy
    C T Collins
    J Reid
    M Makrides
    B E Lingwood
    A J McPhee
    S A Morris
    R A Gibson
    L C Ward
    European Journal of Clinical Nutrition, 2013, 67 : S47 - S53