Electrical Impedance Spectroscopy Based Preterm Birth Prediction with Machine Learning

被引:0
|
作者
Wang, Mengxiao [1 ]
Lang, Zi-Qiang [1 ]
Zhang, Di [1 ]
Anumba, D. O. C. [2 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Acad Unit Reprod & Dev Med, Dept Oncol & Metab, Sheffield, S Yorkshire, England
关键词
Preterm birth; Machine learning; Data balancing; Electrical impedance spectroscopy;
D O I
10.1007/978-3-031-67278-1_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preterm birth (PTB) is a critical global health concern as it stands as the leading cause of neonatal mortality. The objective of this research is to construct Machine Learning (ML) models functioning as a decision support system, intended to predict the likelihood of preterm delivery among pregnant women at high risk. We applied different rebalancing optimization methods to an extremely imbalanced electrical impedance spectroscopy (EIS) data set. Our EIS data set consisted of 365 records, and 12% ( n = 43) of records were preterm birth. We employed four classical machine learning classifiers, namely Logistic Regression, Random Forest, MultiLayer Perceptron, and Support Vector Machine, along with two distinct data rebalancing approaches: synthetic minority oversampling technique (SMOTE) and weighed balancing method. Our primary means of assessing model efficiency were sensitivity and AUC. Our findings indicated that SMOTE significantly enhanced the prediction performance of the PTB group, MLP attained the best sensitivity score of 0.89.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条
  • [21] Establishment of a model for predicting preterm birth based on the machine learning algorithm
    Zhang, Yao
    Du, Sisi
    Hu, Tingting
    Xu, Shichao
    Lu, Hongmei
    Xu, Chunyan
    Li, Jufang
    Zhu, Xiaoling
    BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [22] Establishment of a model for predicting preterm birth based on the machine learning algorithm
    Yao Zhang
    Sisi Du
    Tingting Hu
    Shichao Xu
    Hongmei Lu
    Chunyan Xu
    Jufang Li
    Xiaoling Zhu
    BMC Pregnancy and Childbirth, 23
  • [23] Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
    Abraham, Abin
    Le, Brian
    Kosti, Idit
    Straub, Peter
    Velez-Edwards, Digna R.
    Davis, Lea K.
    Newton, J. M.
    Muglia, Louis J.
    Rokas, Antonis
    Bejan, Cosmin A.
    Sirota, Marina
    Capra, John A.
    BMC MEDICINE, 2022, 20 (01)
  • [24] Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
    Abin Abraham
    Brian Le
    Idit Kosti
    Peter Straub
    Digna R. Velez-Edwards
    Lea K. Davis
    J. M. Newton
    Louis J. Muglia
    Antonis Rokas
    Cosmin A. Bejan
    Marina Sirota
    John A. Capra
    BMC Medicine, 20
  • [25] Machine Learning Algorithm Using Clinical Data and Demographic Data for Preterm Birth Prediction
    Hoffman, Matthew
    Liu, Wei
    Tunguhan, Jade
    Bitar, Ghamar
    Kumar, Kaveeta
    Ewen, Edward
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S362 - S363
  • [26] Machine learning model-based preterm birth prediction and clinical nomogram: A big retrospective cohort study
    Liu, Ya
    Liu, Jiangling
    Shen, Heqing
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2025, 169 (01) : 332 - 340
  • [27] Prediction of preterm birth in multiparous women using logistic regression and machine learning approaches
    Belaghi, Reza Arabi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Machine Learning Approach for Preterm Birth Prediction Using Health Records: Systematic Review
    Sharifi-Heris, Zahra
    Laitala, Juho
    Airola, Antti
    Rahmani, Amir M.
    Bender, Miriam
    JMIR MEDICAL INFORMATICS, 2022, 10 (04) : 18 - 35
  • [29] Rapid recognition of processed milk type using electrical impedance spectroscopy and machine learning
    Huang, Ziyu
    Xiao, Yanghao
    Xiao, Yuhui
    Cai, Honghao
    Ni, Hui
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2023, 58 (06): : 3121 - 3134
  • [30] Machine Learning Prediction Models for Neurodevelopmental Outcome After Preterm Birth: A Scoping Review and New Machine Learning Evaluation Framework
    van Boven, Menne R.
    Henke, Celina E.
    Leemhuis, Aleid G.
    Hoogendoorn, Mark
    van Kaam, Anton H.
    Konigs, Marsh
    Oosterlaan, Jaap
    PEDIATRICS, 2022, 150 (01)