Conjugate points along spherical harmonics

被引:0
|
作者
Suri, Ali [1 ]
机构
[1] Univ Paderborn, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Conjugate points; Volumorphism group; Misiolek criterion; Spherical harmonics; Quasi-geostrophic equations; Central extension; PRESERVING DIFFEOMORPHISMS; STABILITY; FLOWS; GEOMETRY;
D O I
10.1016/j.geomphys.2024.105333
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Utilizing structure constants, we present a version of the Misiolek criterion for identifying conjugate points. We propose an approach that enables us to locate these points along solutions of the quasi-geostrophic equations on the sphere S2. We demonstrate that for any spherical harmonics Y-lm with 1 <=|m|<= l, except for Y-1 +/- 1 and Y-2 +/- 1, conjugate points can be determined along the solution generated by the velocity field elm=del Y-perpendicular to(lm). Subsequently, we investigate the impact of the Coriolis force on the occurrence of conjugate points. Moreover, for any zonal flow generated by the velocity field del(perpendicular to)Y(l1)0, we demonstrate that proper rotation rate can lead to the appearance of conjugate points along the corresponding solution, where l(1)=2k+1.is an element of N Additionally, we prove the existence of conjugate points along (complex) Rossby-Haurwitz waves and explore the effect of the Coriolis force on their stability.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A fast transform for spherical harmonics
    Martin J. Mohlenkamp
    Journal of Fourier Analysis and Applications, 1999, 5 : 159 - 184
  • [42] THE THEORY OF VECTOR SPHERICAL HARMONICS
    HILL, EL
    AMERICAN JOURNAL OF PHYSICS, 1954, 22 (04) : 211 - 214
  • [43] Importance Sampling Spherical Harmonics
    Jarosz, Wojciech
    Carr, Nathan A.
    Jensen, Henrik Wann
    COMPUTER GRAPHICS FORUM, 2009, 28 (02) : 577 - 586
  • [44] Particle Dreams in Spherical Harmonics
    Sandin, Dan
    Kooima, Robert
    Spiegel, Laurie
    DeFanti, Tom
    2014 IEEE VIRTUAL REALITY (VR), 2014, : 155 - 155
  • [45] A star product on the spherical harmonics
    Molin, P
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (03) : 227 - 236
  • [46] AN ADDITION THEOREM FOR SPHERICAL HARMONICS
    TIKOCHIN.Y
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 1093 - &
  • [47] SOME REMARKS ON SPHERICAL HARMONICS
    Gichev, V. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (04) : 553 - 567
  • [48] On Metric Invariants of Spherical Harmonics
    Lychagin, Valentin
    SYMMETRY-BASEL, 2021, 13 (08):
  • [49] On the convergence of the spherical harmonics approximations
    Segatto, CF
    de Vilhena, MTMB
    Pazos, RP
    NUCLEAR SCIENCE AND ENGINEERING, 2000, 134 (01) : 114 - 119
  • [50] JACOBI POLYNOMIALS AS SPHERICAL HARMONICS
    BRAAKSMA, BL
    MEULENBE.B
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (04): : 384 - &