On Metric Invariants of Spherical Harmonics

被引:1
|
作者
Lychagin, Valentin [1 ]
机构
[1] Trapeznikov Inst Control Sci, Russian Acad Sci, 65 Profsoyuznaya Str, Moscow 117997, Russia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
基金
俄罗斯科学基金会;
关键词
differential invariants; spherical harmonics; Euler and Laplace equations;
D O I
10.3390/sym13081470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The algebraic and differential SO (3)-invariants of spherical harmonics are studied in this work. The fields of rational algebraic and rational differential invariants and their applications for the description of regular SO (3)-orbits of spherical harmonics are given.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] INVARIANTS OF SPHERICAL-HARMONICS AS ORDER PARAMETERS IN LIQUIDS
    BARANYAI, A
    GEIGER, A
    GARTRELLMILLS, PR
    HEINZINGER, K
    MCGREEVY, R
    PALINKAS, G
    RUFF, I
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1987, 83 : 1335 - 1365
  • [2] REFERENCE SETS OF INVARIANTS OF SPHERICAL-HARMONICS FOR CLUSTERS OF VARIOUS GEOMETRIES
    MCGREEVY, RL
    BARANYAI, A
    RUFF, I
    ACTA CHIMICA HUNGARICA-MODELS IN CHEMISTRY, 1988, 125 (05): : 717 - 743
  • [3] Spherical harmonics and monopole harmonics
    Fung, MK
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (04) : 773 - 782
  • [4] SPHERICAL HARMONICS
    SEELEY, RT
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 115 - &
  • [5] Spherical Harmonics
    Atkinson, Kendall
    Han, Weimin
    SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION, 2012, 2044 : 11 - 86
  • [6] ON THE RELATION BETWEEN SPHERICAL HARMONICS AND SIMPLIFIED SPHERICAL HARMONICS METHODS
    Coppa, G. G. M.
    Giusti, V.
    Montagnini, B.
    Ravetto, P.
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2010, 39 (2-4): : 164 - 191
  • [7] Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics
    De Santis, A
    Torta, JM
    Lowes, FJ
    PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 1999, 24 (11-12): : 935 - 941
  • [8] Special Metric Invariants
    Sosov E.N.
    Lobachevskii Journal of Mathematics, 2018, 39 (2) : 286 - 288
  • [9] A metric with no symmetries or invariants
    Koutras, A
    McIntosh, C
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (05) : L47 - L49
  • [10] ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS
    Bondarenko, A. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (06) : 993 - 996