Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend

被引:0
|
作者
Yao, Zhentao [1 ]
Wang, Manzhuo [1 ]
Zhang, Yue [1 ]
Sun, Zhaoyang [1 ]
Sun, Xiaoqiang [1 ]
Wu, Yuanda [2 ,3 ]
Zhang, Daming [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Key Lab Optoelect Mat & Devices, Beijing 100083, Peoples R China
关键词
thermo-optic; silica waveguide; mode switch; integrated optics; PRINCIPLES;
D O I
10.3390/nano14241991
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. Standard CMOS processing of ultraviolet photolithography, chemical vapor deposition, and plasma etching are adopted in fabrication. Detailed characterizations on the prepared switch are performed to confirm the precise fabrication. The measurement results show that within the wavelength range from 1530 to 1575 nm, for the E11 mode input, the switch exhibits an extinction ratio of >= 13.1 dB and a crosstalk <=-22.8 dB at an electrical driving power of 284.8 mW, while for the E21 mode input, the extinction ratio is >= 15.5 dB and the crosstalk is <=-18.1 dB at an electrical driving power of 282.4 mW. These results prove the feasibility of multimode S-bends in mode switching. The favorable performance of the demonstrated switch promises good potential for on-chip mode routing.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A 2x2 photonic crystal waveguide thermo-optic switch
    Shao, Yue
    Leng, Lemeng
    Zhao, Peiyan
    Jiang, Wei
    17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [22] SOI-based 16×16 thermo-optic waveguide switch matrix
    State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    Chin. Phys. Lett., 2006, 7 (1823-1825):
  • [23] Thermo-Optic Switch based on Double-Slot Photonic Crystal Waveguide
    Cui, Kaiyu
    Zhao, Qiang
    Feng, Xue
    Huang, Yidong
    Li, Yongzhuo
    Wang, Da
    Zhang, Wei
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [24] Thermo-optic waveguide digital optical switch using symmetrically coupled gratings
    Sun, DG
    Liu, ZY
    Zha, Y
    Deng, WY
    Zhang, Y
    Li, XQ
    OPTICS EXPRESS, 2005, 13 (14): : 5463 - 5471
  • [25] Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch
    Al-Hetar, Abdulaziz M.
    Supa'at, Abu Sahmah M.
    Mohammad, A. B.
    Yuhanti, I.
    OPTICS COMMUNICATIONS, 2008, 281 (23) : 5764 - 5767
  • [26] Digital Thermo-optic Switch of SOI Waveguide Based on Goos-Hanchen Spatial Shift of Reflected Mode
    Chen Zhuo
    Li Tiancheng
    Sun Degui
    Sun Na
    Shang Hongpeng
    Chen Chen
    ACTA PHOTONICA SINICA, 2021, 50 (04)
  • [27] Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler
    Wang, Xibin
    Chiang, Kin Seng
    OPTICS EXPRESS, 2019, 27 (24): : 35385 - 35393
  • [28] Microsphere whispering gallery mode coupler based on a S-bend waveguide structure
    Chiang, Hsin-Tung
    Lin, Gi-Zen
    Tai, Chao-Yi
    Liu, Chia-Jong
    PHOTONICS NORTH 2006, PTS 1 AND 2, 2006, 6343
  • [29] Silica-based PLC 1 x 128 thermo-optic switch
    Watanabe, T
    Goh, T
    Okuno, M
    Sohma, SI
    Shibata, T
    Itoh, M
    Kobayashi, M
    Ishii, M
    Sugita, M
    Hibino, Y
    ECOC'01: 27TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, VOLS 1-6, 2001, : 134 - 135
  • [30] Flexible waveguide integrated thermo-optic switch based on TiO2 platform
    Chen, Zequn
    Wei, Maoliang
    Sun, Boshu
    Weng, Yang
    Jian, Jialing
    Zhong, Chuyu
    Sun, Chunlei
    Si, Ke
    Gong, Wei
    Lin, Hongtao
    Li, Lan
    OPTICS LETTERS, 2023, 48 (12) : 3239 - 3242