multi-GAT: Integrative Analysis of scRNA-seq and scATAC-seq Data Using Graph Attention Networks for Cell Annotation

被引:0
|
作者
Jia, Shangru [1 ]
Tsunoda, Tatsuhiko [1 ,2 ,3 ]
Sharma, Alok [2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Lab Med Sci Math, Tokyo, Japan
[2] Univ Tokyo, Sch Sci, Dept Biol Sci, Lab Med Sci Math, Tokyo, Japan
[3] RIKEN, Lab Med Sci Math, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
[4] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld 4111, Australia
[5] Korea Univ, Coll Informat, Seoul, South Korea
关键词
Graph Attention Networks; Single-cell transcriptomics; Canonical Correlation Analysis; Cell Annotation; Contrastive Learning;
D O I
10.1007/978-981-96-0116-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell RNA sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) provide complementary views of cellular states by capturing transcriptomic and chromatin accessibility landscapes, respectively [1]. Combining these modalities offers a comprehensive understanding of cellular functions and regulatory mechanisms. Here, we present multi-GAT, a model specifically designed for integrative analysis of scRNA-seq and scATAC-seq data using Canonical Correlation Analysis (CCA) followed by Graph Attention Network (GAT) to predict cell types. This approach leverages shared nearest neighbors and contrastive learning to enhance model performance. Multi-GAT effectively captures the complex relationships between transcriptomic and chromatin accessibility data, achieving robust cell type annotation across different single-cell modalities. The experimental results demonstrate that multi-GAT surpasses several baseline methods in accuracy, precision, and F1-score on the benchmark dataset.
引用
收藏
页码:480 / 486
页数:7
相关论文
共 50 条
  • [21] Automated methods for cell type annotation on scRNA-seq data
    Pasquini, Giovanni
    Arias, Jesus Eduardo Rojo
    Schaefer, Patrick
    Busskamp, Volker
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 961 - 969
  • [22] Regulatory mechanisms orchestrating cellular diversity of Cd36+ olfactory sensory neurons revealed by scRNA-seq and scATAC-seq analysis
    Yang, Jiawen
    Shi, Peiyu
    Li, Yiheng
    Zuo, Yachao
    Nie, Yage
    Xu, Tao
    Peng, Dongjie
    An, Ziyang
    Huang, Tingting
    Zhang, Jingyi
    Zhang, Weixing
    Xu, Yicong
    Tang, Zhongjie
    Li, Anan
    Xu, Jin
    CELL REPORTS, 2024, 43 (09):
  • [23] Multi-View Clustering With Graph Learning for scRNA-Seq Data
    Wu, Wenming
    Zhang, Wensheng
    Hou, Weimin
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3535 - 3546
  • [24] Cluster Analysis of Scrna-Seq Data Combining Bioinformatics with Graph Attention Autoencoders and Ensemble Clustering
    Yuan, Lin
    Xu, Zhijie
    Li, Zhujun
    Zhang, Shoukang
    Hu, Chunyu
    Yu, Wendong
    Wei, Hongwei
    Wang, Xingang
    Geng, Yushui
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024, 2024, 14882 : 62 - 71
  • [25] An efficient scRNA-seq dropout imputation method using graph attention network
    Chenyang Xu
    Lei Cai
    Jingyang Gao
    BMC Bioinformatics, 22
  • [26] Methods for cell-type annotation on scRNA-seq data: A recent overview
    Lazaros, Konstantinos
    Vlamos, Panagiotis
    Vrahatis, Aristidis G.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2023,
  • [27] An efficient scRNA-seq dropout imputation method using graph attention network
    Xu, Chenyang
    Cai, Lei
    Gao, Jingyang
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [28] Cell annotation using scRNA-seq data: A protein-protein interaction network approach
    Senra, Daniela
    Guisoni, Nara
    Diambra, Luis
    METHODSX, 2023, 10
  • [29] MLG: multilayer graph clustering for multi-condition scRNA-seq data
    Lu, Shan
    Conn, Daniel J.
    Chen, Shuyang
    Johnson, Kirby D.
    Bresnick, Emery H.
    Keles, Sunduz
    NUCLEIC ACIDS RESEARCH, 2021, 49 (22) : E127
  • [30] LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity
    Xie, Juan
    Jeon, Hyeongseon
    Xin, Gang
    Ma, Qin
    Chung, Dongjun
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (07)