multi-GAT: Integrative Analysis of scRNA-seq and scATAC-seq Data Using Graph Attention Networks for Cell Annotation

被引:0
|
作者
Jia, Shangru [1 ]
Tsunoda, Tatsuhiko [1 ,2 ,3 ]
Sharma, Alok [2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Lab Med Sci Math, Tokyo, Japan
[2] Univ Tokyo, Sch Sci, Dept Biol Sci, Lab Med Sci Math, Tokyo, Japan
[3] RIKEN, Lab Med Sci Math, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
[4] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld 4111, Australia
[5] Korea Univ, Coll Informat, Seoul, South Korea
关键词
Graph Attention Networks; Single-cell transcriptomics; Canonical Correlation Analysis; Cell Annotation; Contrastive Learning;
D O I
10.1007/978-981-96-0116-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell RNA sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) provide complementary views of cellular states by capturing transcriptomic and chromatin accessibility landscapes, respectively [1]. Combining these modalities offers a comprehensive understanding of cellular functions and regulatory mechanisms. Here, we present multi-GAT, a model specifically designed for integrative analysis of scRNA-seq and scATAC-seq data using Canonical Correlation Analysis (CCA) followed by Graph Attention Network (GAT) to predict cell types. This approach leverages shared nearest neighbors and contrastive learning to enhance model performance. Multi-GAT effectively captures the complex relationships between transcriptomic and chromatin accessibility data, achieving robust cell type annotation across different single-cell modalities. The experimental results demonstrate that multi-GAT surpasses several baseline methods in accuracy, precision, and F1-score on the benchmark dataset.
引用
收藏
页码:480 / 486
页数:7
相关论文
共 50 条
  • [11] Multiplexed analysis of gene expression and chromatin accessibility of human umbilical cord blood using scRNA-Seq and scATAC-Seq
    Hou, Xianliang
    Wang, Ying-Lan
    Shi, Wei
    Hu, Wenlong
    Zeng, Zhipeng
    Liu, Jiayi
    Li, Lian
    Cai, Wanxia
    Tang, Donge
    Dai, Yong
    MOLECULAR IMMUNOLOGY, 2022, 152 : 207 - 214
  • [12] Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data
    Hu, Dayu
    Liang, Ke
    Dong, Zhibin
    Wang, Jun
    Zhao, Yawei
    He, Kunlun
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [13] scCorrect: Cross-modality label transfer from scRNA-seq to scATAC-seq using domain adaptation
    Liu, Yan
    Pei, Wenyi
    Chen, Li
    Xia, Yu
    Yan, He
    Hu, Xiaohua
    ANALYTICAL BIOCHEMISTRY, 2025, 702
  • [14] scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
    Ziqi Zhang
    Chengkai Yang
    Xiuwei Zhang
    Genome Biology, 23
  • [15] scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
    Zhang, Ziqi
    Yang, Chengkai
    Zhang, Xiuwei
    GENOME BIOLOGY, 2022, 23 (01)
  • [16] Meiotic transcriptional reprogramming mediated by cell-cell communications in humans and mice revealed by scATAC-seq and scRNA-seq
    Hai-Quan Wang
    Xiao-Long Wu
    Jing Zhang
    Si-Ting Wang
    Yong-Juan Sang
    Kang Li
    Chao-Fan Yang
    Fei Sun
    Chao-Jun Li
    Zoological Research, 2024, (03) : 601 - 616
  • [17] Protocol for optimized nasal mucosa sample processing to obtain high-quality scRNA-seq and scATAC-seq data
    Huang, Yaling
    Wu, Yisha
    Han, Shikai
    Wang, Qiaoling
    Cong, Guomingxiu
    Liu, Zhongzhen
    Guan, Shuyan
    Huang, Xiaojuan
    Liu, Ying
    Yin, Jianhua
    Xue, Jinmei
    Liu, Chuanyu
    STAR PROTOCOLS, 2024, 5 (03):
  • [18] Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer
    Xu, Kun
    Zhang, Wenwen
    Wang, Cong
    Hu, Longfei
    Wang, Runtian
    Wang, Cenzhu
    Tang, Lin
    Zhou, Guohua
    Zou, Bingjie
    Xie, Hui
    Tang, Jinhai
    Guan, Xiaoxiang
    HUMAN MOLECULAR GENETICS, 2021, 30 (05) : 370 - 380
  • [19] Benchmarking bulk and single-cell variant-calling approaches on Chromium scRNA-seq and scATAC-seq libraries
    Wiens, Matthew
    Farahani, Hossein
    Scott, R. Wilder
    Underhill, T. Michael
    Bashashati, Ali
    GENOME RESEARCH, 2024, 34 (08) : 1196 - 1210
  • [20] CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
    Buterez, David
    Bica, Ioana
    Tariq, Ifrah
    Andres-Terre, Helena
    Lio, Pietro
    BIOINFORMATICS, 2022, 38 (05) : 1277 - 1286