multi-GAT: Integrative Analysis of scRNA-seq and scATAC-seq Data Using Graph Attention Networks for Cell Annotation

被引:0
|
作者
Jia, Shangru [1 ]
Tsunoda, Tatsuhiko [1 ,2 ,3 ]
Sharma, Alok [2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Lab Med Sci Math, Tokyo, Japan
[2] Univ Tokyo, Sch Sci, Dept Biol Sci, Lab Med Sci Math, Tokyo, Japan
[3] RIKEN, Lab Med Sci Math, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
[4] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld 4111, Australia
[5] Korea Univ, Coll Informat, Seoul, South Korea
关键词
Graph Attention Networks; Single-cell transcriptomics; Canonical Correlation Analysis; Cell Annotation; Contrastive Learning;
D O I
10.1007/978-981-96-0116-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell RNA sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) provide complementary views of cellular states by capturing transcriptomic and chromatin accessibility landscapes, respectively [1]. Combining these modalities offers a comprehensive understanding of cellular functions and regulatory mechanisms. Here, we present multi-GAT, a model specifically designed for integrative analysis of scRNA-seq and scATAC-seq data using Canonical Correlation Analysis (CCA) followed by Graph Attention Network (GAT) to predict cell types. This approach leverages shared nearest neighbors and contrastive learning to enhance model performance. Multi-GAT effectively captures the complex relationships between transcriptomic and chromatin accessibility data, achieving robust cell type annotation across different single-cell modalities. The experimental results demonstrate that multi-GAT surpasses several baseline methods in accuracy, precision, and F1-score on the benchmark dataset.
引用
收藏
页码:480 / 486
页数:7
相关论文
共 50 条
  • [1] Integrating scRNA-seq and scATAC-seq with inter-type attention heterogeneous graph neural networks
    Cai, Lingsheng
    Ma, Xiuli
    Ma, Jianzhu
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [2] Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu, Yue
    Zhang, Junfeng
    Wang, Shulin
    Zeng, Xiangxiang
    Zhang, Wei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [3] scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data
    Zeng, Pengcheng
    Ma, Yuanyuan
    Lin, Zhixiang
    BIOINFORMATICS, 2023, 39 (01)
  • [4] Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility using scRNA-Seq and scATAC-Seq
    Weir, Kurt
    Leavey, Patrick
    Santiago, Clayton
    Blackshaw, Seth
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (169):
  • [5] Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment
    Wang, Jie
    Adrianto, Indra
    Subedi, Kalpana
    Liu, Tingting
    Wu, Xiaojun
    Yi, Qijun
    Loveless, Ian
    Yin, Congcong
    Datta, Indrani
    Sant'Angelo, Derek B. B.
    Kronenberg, Mitchell
    Zhou, Li
    Mi, Qing-Sheng
    CELL DISCOVERY, 2023, 9 (01)
  • [6] Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment
    Jie Wang
    Indra Adrianto
    Kalpana Subedi
    Tingting Liu
    Xiaojun Wu
    Qijun Yi
    Ian Loveless
    Congcong Yin
    Indrani Datta
    Derek B. Sant’Angelo
    Mitchell Kronenberg
    Li Zhou
    Qing-Sheng Mi
    Cell Discovery, 9
  • [7] scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
    Yan, Xuhua
    Zheng, Ruiqing
    Chen, Jinmiao
    Li, Min
    BIOINFORMATICS, 2023, 39 (08)
  • [8] Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps
    Jansen, Camden
    Ramirez, Ricardo N.
    El-Ali, Nicole C.
    Gomez-Cabrero, David
    Tegner, Jesper
    Merkenschlager, Matthias
    Conesa, Ana
    Mortazavi, Ali
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (11)
  • [9] Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator
    MIyao, Takahisa
    Miyauchi, Maki
    Kelly, S. Thomas
    Terooatea, Tommy W.
    Ishikawa, Tatsuya
    Oh, Eugene
    Hirai, Sotaro
    Horie, Kenta
    Takakura, Yuki
    Ohki, Houko
    Hayama, Mio
    Maruyama, Yuya
    Seki, Takao
    Ishii, Hiroto
    Yabukami, Haruka
    Yoshida, Masaki
    Inoue, Azusa
    Sakaue-Sawano, Asako
    Miyawaki, Atsushi
    Muratani, Masafumi
    Minoda, Aki
    Akiyama, Nobuko
    Akiyama, Taishin
    ELIFE, 2022, 11
  • [10] scATAcat: cell-type annotation for scATAC-seq data
    Altay, Aybuge
    Vingron, Martin
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (04)