Hammerstein equations for sparse random matrices

被引:0
|
作者
Akara-pipattana, Pawat [1 ]
Evnin, Oleg [2 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Res Unit, Bangkok 10330, Thailand
[3] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
sparse random matrix spectra; statistical field theory; large N saddle points; nonlinear integral equations; DENSITY-OF-STATES; SPECTRUM; PHYSICS;
D O I
10.1088/1751-8121/ada8ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] The rank of sparse random matrices over finite fields
    Blomer, J
    Karp, R
    Welzl, E
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (04) : 407 - 419
  • [42] Extreme eigenvalues of sparse, heavy tailed random matrices
    Auffinger, Antonio
    Tang, Si
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (11) : 3310 - 3330
  • [43] Sparse random matrices and Gaussian ensembles with varying randomness
    Anegawa, Takanori
    Iizuka, Norihiro
    Mukherjee, Arkaprava
    Sake, Sunil Kumar
    Trivedi, Sandip P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [44] Sparse block-structured random matrices: universality
    Cicuta, Giovanni M.
    Pernici, Mario
    JOURNAL OF PHYSICS-COMPLEXITY, 2023, 4 (02):
  • [45] Largest eigenvalues and eigenvectors of band or sparse random matrices
    Benaych-Georges, Florent
    Peche, Sandrine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [46] Universality of the least singular value for sparse random matrices
    Che, Ziliang
    Lopatto, Patrick
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [47] RANDOM DIFFERENCE EQUATIONS AND RENEWAL THEORY FOR PRODUCTS OF RANDOM MATRICES
    KESTEN, H
    ACTA MATHEMATICA, 1973, 131 (3-4) : 207 - 248
  • [48] ON DIFFERENTIABILITY OF A HAMMERSTEIN OPERATOR AND ON HAMMERSTEIN EQUATIONS
    SOBOLEV, AV
    SOBOLEV, VI
    RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) : 258 - 259
  • [49] Erratum to: The Tracy–Widom Law for Some Sparse Random Matrices
    Sasha Sodin
    Journal of Statistical Physics, 2017, 166 : 1343 - 1343
  • [50] Theory of Sparse Random Matrices and Vibrational Spectra of Amorphous Solids
    Beltukov, Y. M.
    Parshin, D. A.
    PHYSICS OF THE SOLID STATE, 2011, 53 (01) : 151 - 162