Hammerstein equations for sparse random matrices

被引:0
|
作者
Akara-pipattana, Pawat [1 ]
Evnin, Oleg [2 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Res Unit, Bangkok 10330, Thailand
[3] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
sparse random matrix spectra; statistical field theory; large N saddle points; nonlinear integral equations; DENSITY-OF-STATES; SPECTRUM; PHYSICS;
D O I
10.1088/1751-8121/ada8ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Sparse random matrices: the eigenvalue spectrum revisited
    Semerjian, G
    Cugliandolo, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (23): : 4837 - 4851
  • [32] Sparse random matrices have simple spectrum
    Luh, Kyle
    Van Vu
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2307 - 2328
  • [33] The existence theorems of the random solutions for random Hammerstein type nonlinear integral equations
    Li, GZ
    Debnath, L
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 111 - 115
  • [34] Largest eigenvalue statistics of sparse random adjacency matrices
    Slavov, Bogdan
    Polovnikov, Kirill
    Nechaev, Sergei
    Pospelov, Nikita
    arXiv, 2023,
  • [35] The Tracy–Widom Law for Some Sparse Random Matrices
    Sasha Sodin
    Journal of Statistical Physics, 2009, 136 : 834 - 841
  • [36] Restricted Isometry Property analysis for sparse random matrices
    Zhang, Bo
    Liu, Yu-Lin
    Wang, Kai
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (01): : 169 - 174
  • [37] Sparse recovery with pre-Gaussian random matrices
    Foucart, Simon
    Lai, Ming-Jun
    STUDIA MATHEMATICA, 2010, 200 (01) : 91 - 102
  • [38] Sparse random matrices and Gaussian ensembles with varying randomness
    Takanori Anegawa
    Norihiro Iizuka
    Arkaprava Mukherjee
    Sunil Kumar Sake
    Sandip P. Trivedi
    Journal of High Energy Physics, 2023
  • [39] Properties of sparse random matrices over finite fields
    Alamino, Roberto C.
    Saad, David
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [40] Rank deficiency in sparse random GF[2] matrices
    Darling, R. W. R.
    Penrose, Mathew D.
    Wade, Andrew R.
    Zabell, Sandy L.
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 36