Hammerstein equations for sparse random matrices

被引:0
|
作者
Akara-pipattana, Pawat [1 ]
Evnin, Oleg [2 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Res Unit, Bangkok 10330, Thailand
[3] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
sparse random matrix spectra; statistical field theory; large N saddle points; nonlinear integral equations; DENSITY-OF-STATES; SPECTRUM; PHYSICS;
D O I
10.1088/1751-8121/ada8ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] RANDOM NONLINEAR HAMMERSTEIN EQUATIONS
    YUAN, XZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 249 - 254
  • [2] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130
  • [3] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 579 - 591
  • [4] Sparse Recovery Using Sparse Random Matrices
    Indyk, Piotr
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 157 - 157
  • [5] On the Rank of Random Sparse Matrices
    Costello, Kevin P.
    Vu, Van
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (03): : 321 - 342
  • [6] On sparse random combinatorial matrices
    Aigner-Horev, Elad
    Person, Yury
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [7] Spectra of sparse random matrices
    Kuehn, Reimer
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (29)
  • [8] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 579 - 591
  • [9] Sparse random block matrices
    Cicuta, Giovanni M.
    Pernici, Mario
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (17)
  • [10] Sparse matrices and differential equations
    Chartier, P
    Philippe, B
    NUMERICAL ALGORITHMS, 2000, 24 (04) : U2 - U3