A shared multi-scale lightweight convolution generative network for few-shot multivariate time series forecasting

被引:0
|
作者
Zhang, Minglan [1 ,3 ]
Sun, Linfu [1 ,3 ]
Yang, Jing [2 ]
Zou, Yisheng [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Sichuan, Peoples R China
[3] Mfg Ind Chains Collaborat & Informat Support Techn, Chengdu 610031, Sichuan, Peoples R China
关键词
Multivariate time series forecasting; Few-shot; Multi-scale feature fusion; Convolution generative network; Parameters sharing; PREDICTION; LSTM; MODEL;
D O I
10.1016/j.asoc.2024.112420
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is an important time series data mining technique. Among them, multivariate time series (MTS) forecasting has received extensive attention in many fields. However, many existing MTS forecasting models usually rely on a large amount of labeled data for model training, and data collection and labeling are difficult in real systems. The insufficient amount of data makes it difficult for the model to fully learn the intrinsic patterns and features of the data, which not only increases the prediction error, but also makes it hard to obtain satisfactory prediction results. To address this challenge, we propose a shared multi-scale lightweight convolution generative (SMLCG) network for few-shot multivariate time series forecasting by using samples generation strategy. The overall goal is to design a shared multi-scale feature generation prediction framework that generates data highly similar to the original sample and enriches the training sample to improve prediction accuracy. Specifically, the MTS is divided into different scales, and the multi-scale feature fusion module is utilized to capture and fuse the MTS information indifferent spatial dimensions to eliminate the heterogeneity among the data. Then, the key information in the multi-scale features is captured by a lightweight convolution generative network, and the feature weights are dynamically assigned to explore the change information. In addition, a spatio-temporal memory module is designed based on the parameter sharing strategy to capture the spatio-temporal dynamic relationship of sequences by learning the common knowledge in multi-scale features, thus improving the robustness and generalization ability. Through comprehensive experiments on four publicly available datasets and comparisons with other reported models, it is demonstrated that the SMLCG model can efficiently generate approximate samples in the few-shot case and provide excellent prediction results. The architecture of SMLCG serves as a valuable reference for practical solutions to address the few-shot problem in multivariate time series.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multi-Scale Decision Network With Feature Fusion and Weighting for Few-Shot Learning
    Wang, Xiaoru
    Ma, Bing
    Yu, Zhihong
    Li, Fu
    Cai, Yali
    IEEE ACCESS, 2020, 8 : 92172 - 92181
  • [22] Multi-scale attentional similarity guidance network for few-shot semantic segmentation
    Liu, Ze-yu
    Liu, Jian-wei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (21): : 18895 - 18915
  • [23] Parallel multi-scale dynamic graph neural network for multivariate time series forecasting
    Hou, Mingjie
    Liu, Zhenyu
    Sa, Guodong
    Wang, Yueyang
    Sun, Jiacheng
    Li, Zhinan
    Tan, Jianrong
    PATTERN RECOGNITION, 2025, 158
  • [24] Few-Shot Forecasting of Time-Series with Heterogeneous Channels
    Brinkmeyer, Lukas
    Drumond, Rafael Rego
    Burchert, Johannes
    Schmidt-Thieme, Lars
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 3 - 18
  • [25] Meta-learning for few-shot time series forecasting
    Xiao, Feng
    Liu, Lu
    Han, Jiayu
    Guo, Degui
    Wang, Shang
    Cui, Hai
    Peng, Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 325 - 341
  • [26] Few-Shot Learning Method for Multi-Scale Feature Aggregation
    Zeng, Wu
    Mao, Guojun
    Computer Engineering and Applications, 2023, 59 (15) : 151 - 159
  • [27] Few-shot Image Classification Algorithm Based on Multi-scale Attention and Residual Network
    Wang, Qi
    Jin, Huazhong
    Yan, Meng
    Li, Lin
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 641 - 645
  • [28] MULTI-SCALE INTERACTION PROTOTYPICAL NETWORK FOR FEW-SHOT REMOTE SENSING SCENE CLASSIFICATION
    Pei, Shiji
    Wang, Yijing
    Ma, Jingjing
    Tang, Xu
    Yang, Yuqun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6231 - 6234
  • [29] Multi-Scale Spatial Perception Attention Network for Few-Shot Hyperspectral Image Classification
    Li, Yang
    Luo, Jian
    Long, Haoyu
    Jin, Qianqian
    IEEE ACCESS, 2024, 12 : 173076 - 173090
  • [30] Multi-scale Relation Network for Few-Shot Learning Based on Meta-learning
    Ding, Yueming
    Tian, Xia
    Yin, Lirong
    Chen, Xiaobing
    Liu, Shan
    Yang, Bo
    Zheng, Wenfeng
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 343 - 352